K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

CH=2R =90

7 tháng 12 2021

xét jfnfjdmemekekd

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

Xét ΔCAB có 

AN,BM là các đường cao

AN cắt BM tại H

Do đó: H là trực tâm

=>CH vuông góc với AB

b: góc IMO=góc IMH+góc OMH

=90 độ-góc ACH+góc ABM

=90 độ

=>MI là tiếp tuyến của (O)

22 tháng 2 2017

a, HS tự chứng minh

b, Gọi CH ∩ AB = K

Chứng minh được ∆MIC cân tại I

=>  I C M ^ = I M C ^

Tương tự:  O M A ^ = O A M ^

Chứng minh được  I M O ^ = 90 0 => ĐPCM

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

=>ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp

AB là đường kính

=>ΔANB vuông tại N

Xét ΔCAB có

AN.BM là đường cao

AN cắt BM tại H

=>H là trực tâm

=>CH vuông góc AB

b:

Gọi giao của CH vơi AB là K

=>CH vuông góc AB tại K

góc OMI=góc OMH+góc IMH

=góc OBM+góc IHM

=góc OBM+góc BHK=90 độ

=>IM là tiếp tuyến của (O)

17 tháng 4 2023

kk tớ cx hc hình chiếu 

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA
Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

mà CM=CA

và DM=DB

nên CD=CA+DB

15 tháng 12 2021

a) Vì AD là tia phân giác của góc CAB⇒góc CAH= góc HAB

mà góc CAH là góc nội tiếp chắn cung CH

      góc HAB là góc nội tiếp chắn cung HB

⇒ cung CH=cung HB

Ta có: góc HBC là góc nội tiếp chắn cung CH

          góc HBD là góc tạo bởi tia tiếp tuyến và dây cung chắn cung HB

⇒ góc HBC = góc HBD

lại có: góc AHB chắn nửa (O)⇒góc AHB=90o⇒AH\(\perp\)HB

Xét ΔFBD có: BH là đường cao đồng thời là đường phân giác

⇒ΔFBD cân tại B⇒FB=DB

Và BH là đường trung tuyến ⇒FH=FD

b)Ta có: góc ACB là góc nội tiếp chắn nửa (O)

⇒ góc ACB= 90o

Xét ΔABM vuông tại B có BC là đường cao ứng với cạnh huyền AM 

AC.AM=AB2 ( hệ thức lượng trong Δ vuông ) (1)

Xét ΔABD vuông tại B có BH là đường cao ứng với cạnh huyền AD

AH.HD=AB2 ( hệ thức lượng trong Δ vuông ) (2)

Từ(1) và(2)⇒AC.AM=AH.HD

15 tháng 12 2021

a)  vì góc CAH= góc HAB( AH là p/g của góc CAB)

=> cung CH= cung BH

Ta có : sđ góc CBH=1/2 sđ cung CH( góc nt chắn cung CH) => góc CBH=1/2 cung BH (1)

          sđ góc HBM=1/2 sđ cung BH ( góc tạo bởi tia tiếp tuyến và dây cung chắn cung BH) (2)

Từ 1 và 2 => góc CBH= góc HBM => CH là p/g của góc FBD

xét △ BDF có: CH là p/g của góc FBD

Mà BH còn là đường trung trực của FD( góc ABH chắn nửa đường tròn)

=>△BDF cân tại B => FB=DB : HF=HD

b) xét △ABM vuông tại B có: AC.AM=AB bình( hệ thức lượng trong tam giác vuông) (3)

          △ABD vuông tại B có: AH.AD=AB bình( hệ thức lượng trong tam giác vuông) (4)

từ 3 và 4 => AC.AM=AH.AD_đpcm