K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

n³-n=n(n²-1)=(n-1)n(n+1)

Ta có trong 3 số tự nhiên liên tiếp thì luôn có 1 số chia hết cho 3 nên n³-n chia hết cho 3.

Vì n lẻ => n-1 và n+1 chia hết cho 2

Vì n lẻ => n = 4k+1 hoặc 4k + 3

Với n = 4k + 1 => n-1 =4k chia hết cho 4, n+1=4k+2 chia hết cho 2

=> n³-n=(n-1)n(n+1) chia hết cho 4.3.2 = 24

Với n = 4k + 3 => n-1 = 4k+2 chia hết cho 2, n+ 1 = 4(k+1) chia hết cho 4

=> n³-n=(n-1)n(n+1) chia hết cho 4.3.2 = 24

Vậy n³-n chia hết cho 24 với n lẻ, n ∈ N

20 tháng 3 2021

\(\Rightarrow n^3-n=\left(n-1\right)n\left(n+1\right)\) (*)

(*) là tích của 3 số tự nhiên liên tiếp nên tồn tại 1 số chia hết cho 3 \(\Rightarrow n^3-n⋮3\left(1\right)\)(1)

Vì n  là số lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\) Thay vào (*) ta được:

\(\Rightarrow n^3-n=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=2k\left(2k+2\right)\left(2k+1\right)=4k\left(k+1\right)\left(2k+1\right)\) k(k+1) là tích của 2 số tự nhiên liên tiếp \(\Rightarrow\) tồn  tại 1 số chia hết cho 2 \(\Rightarrow k\left(k+1\right)⋮2\Rightarrow4k\left(k+1\right)\left(2k+1\right)⋮8\Rightarrow n^3-n⋮8\)(2)

Từ (1) và (2) kết hợp với (3;8)=1 \(\Rightarrow n^3-n⋮24\)

 

22 tháng 9 2015

Bài 1 :

Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ

Bài 2 :

Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn 

9 tháng 10 2017

n^3+3n^2-n-3

=(n^3-n)+(3n^2-3)

=n(n^2-1)+3(n^2-1)=(n^2-1)(n+3)

Xét 8=3^2-1

bạn áp dụng vào công thức trên

=>n^2-1 chia hết cho 8

nên nhân với số nào cũng chia hết cho 8

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48