K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(\left|x-2010\right|+\left|x-2011\right|=2012\\ \Rightarrow\left[{}\begin{matrix}2010-x+2011-x=2012\left(x< 2010\right)\\x-2010+2011-x=2012\left(2010\le x< 2011\right)\\x-2010+x-2011=2012\left(x\ge2011\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2009}{2}\left(tm\right)\\0x=2011\left(vô.lí\right)\\x=\dfrac{6033}{2}\left(tm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{6033}{2}\end{matrix}\right.\)

31 tháng 1 2016

a)vì /x-2011/ là số dương =>x - 2012 là dương

=>x có nhiều giá trị

b)cũng có nhiều giá tri và làm như ý a tương tự

20 tháng 3 2019

\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)

\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

V...

23 tháng 1 2016

D=|x-2010| + |x-2011| + |x-2012|
D=|x-2010| + |x-2011| + |2012-x|
=>D>=|x-2010+2012-x| + |x-2011|
=>D>=|2| + |x-2011|=2 + |x-2011|
Dấu = xảy ra <=> (x-2010)(2012-x)>=0<=>2010<=x<=2012(1)
                           x-2011=0 => x =2011(2)
Từ 1,2 => x=2011
Vậy Bmin=2 khi x=2011
 

 

19 tháng 7 2017

a) \(\left|x-2011\right|=x-2012\)

\(\Rightarrow\orbr{\begin{cases}x-2011=x-2012\\x-2011=2012-x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}0x=-1\\2x=4023\end{cases}\Rightarrow x=\frac{4023}{2}}\)

21 tháng 12 2017

Ta có: |2x - 27|2011 \(\ge\)0 ; (3y + 10)2012 \(\ge\)0

Mà |2x - 27|2011 + (3y + 10)2012 = 0

=> |2x - 27|2011 = 0 và (3y + 10)2012 = 0

=> 2x - 27 = 0 và 3y + 10 = 0

=> 2x = 27 và 3y = -10

=> x = 27/2 và y = -10/3.

11 tháng 2 2019

cho mk hỏi chút sao chỗ từ (1), (2) lại suy ra đc 1= x+y-xy vậy?

11 tháng 2 2019

Bài ni t mần cho phát chán nó  rồi:))

Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)

Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương

Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)

11 tháng 2 2019

|x - 2011| \(\ge\) 2012

\(\Rightarrow\orbr{\begin{cases}x-2011\ge2012\\x-2011\ge-2012\end{cases}\Rightarrow\orbr{\begin{cases}x\ge4023\\x\ge-1\end{cases}}}\)

Vậy x \(\ge\) -1

Ta có 

\(\left|x-2011\right|\ge2012\Rightarrow\orbr{\begin{cases}x-2011\ge2012\\x-2011\le2012\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-2011\ge2012\\2011-x\ge2012\end{cases}\Rightarrow\orbr{\begin{cases}x\ge4023\\-x\ge1\end{cases}}}\orbr{\begin{cases}x\ge4023\\x\le-1\end{cases}}\)

Vậy \(x\ge4023\)hoặc \(x\le-1\)

Lưu ý \(-x>1\Rightarrow x< -1\)