Ai giúp mình với
[X-2011]=X-2012
[X-2010] + [ X-2011]=2012
[,] là giá trị tuyệt đối nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2010\right|+\left|x-2011\right|=2012\\ \Rightarrow\left[{}\begin{matrix}2010-x+2011-x=2012\left(x< 2010\right)\\x-2010+2011-x=2012\left(2010\le x< 2011\right)\\x-2010+x-2011=2012\left(x\ge2011\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2009}{2}\left(tm\right)\\0x=2011\left(vô.lí\right)\\x=\dfrac{6033}{2}\left(tm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{6033}{2}\end{matrix}\right.\)
a)vì /x-2011/ là số dương =>x - 2012 là dương
=>x có nhiều giá trị
b)cũng có nhiều giá tri và làm như ý a tương tự
\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
V...
a) \(\left|x-2011\right|=x-2012\)
\(\Rightarrow\orbr{\begin{cases}x-2011=x-2012\\x-2011=2012-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0x=-1\\2x=4023\end{cases}\Rightarrow x=\frac{4023}{2}}\)
Ta có: |2x - 27|2011 \(\ge\)0 ; (3y + 10)2012 \(\ge\)0
Mà |2x - 27|2011 + (3y + 10)2012 = 0
=> |2x - 27|2011 = 0 và (3y + 10)2012 = 0
=> 2x - 27 = 0 và 3y + 10 = 0
=> 2x = 27 và 3y = -10
=> x = 27/2 và y = -10/3.
cho mk hỏi chút sao chỗ từ (1), (2) lại suy ra đc 1= x+y-xy vậy?
Bài ni t mần cho phát chán nó rồi:))
Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)
Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương
Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)
|x - 2011| \(\ge\) 2012
\(\Rightarrow\orbr{\begin{cases}x-2011\ge2012\\x-2011\ge-2012\end{cases}\Rightarrow\orbr{\begin{cases}x\ge4023\\x\ge-1\end{cases}}}\)
Vậy x \(\ge\) -1
Ta có
\(\left|x-2011\right|\ge2012\Rightarrow\orbr{\begin{cases}x-2011\ge2012\\x-2011\le2012\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2011\ge2012\\2011-x\ge2012\end{cases}\Rightarrow\orbr{\begin{cases}x\ge4023\\-x\ge1\end{cases}}}\orbr{\begin{cases}x\ge4023\\x\le-1\end{cases}}\)
Vậy \(x\ge4023\)hoặc \(x\le-1\)
Lưu ý \(-x>1\Rightarrow x< -1\)