hai tổ cùng lam chug một công việc hoàn thành sau 15 giờ , nếu tổ 1 làm trong 5 giờ , tổ hai làm trong 3 giờ thì được 30% công việc. hỏi nêu làm riêng thì mỗi tổ hoàn thành trong bao lâu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình
y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình
(Điều kiện: x>6; y>6)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{6}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Trong 12 giờ, tổ 1 làm được: \(\dfrac{12}{x}\)(công việc)
Trong 2 giờ, tổ 2 làm được: \(\dfrac{2}{y}\)(công việc)
Theo đề, ta có phương trình: \(\dfrac{12}{x}+\dfrac{2}{y}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=2\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{y}=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\\dfrac{1}{x}+\dfrac{1}{10}=\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{15}\\y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 15 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 10 giờ để hoàn thành công việc khi làm một mình
Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ
Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc
Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:
\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)
Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)
Cả hai tổ làm chung thì mỗi giờ làm được số phần công việc là:
\(1\div2=\dfrac{1}{2}\) (công việc)
Nếu làm riêng thì tổ 1 mỗi giờ làm hơn được tổ 2 số phần công việc là:
\(1\div3=\dfrac{1}{3}\) (công việc)
Nếu làm riêng mỗi giờ tổ 1 làm được số phần công việc là:
\(\left(\dfrac{1}{2}+\dfrac{1}{3}\right)\div2=\dfrac{5}{12}\) (công việc)
Nếu làm riêng mỗi giờ tổ 2 làm được số phần công việc là:
\(\dfrac{1}{2}-\dfrac{5}{12}=\dfrac{1}{12}\) (công việc)
Nếu làm riêng tổ 1 làm xong công viêc hết số giờ là:
\(1\div\dfrac{5}{12}=\dfrac{12}{5}\) (giờ)
Nếu làm riêng tổ 2 làm xong công việc hết số giờ là:
\(1\div\dfrac{1}{12}=12\) (giờ)
Gọi thời gian tổ I hoàn thành là xx(h), khi đó thời gian tổ 2 hoàn thành là x+3x+3(h)
Khi đó, trong 1h thì tổ I và tổ II lần lượt làm đc là 1x1x(phần công việc) và 1x+31x+3 (phần công việc)
Do đó, trong 1h thì 2 tổ làm đc số phần công việc là 1x+1x+31x+1x+3(phần công việc)
Lại có 2 tổ làm chung thì hoàn thành công việc trong 2h, do đó trong 1h cả hai tổ làm đc 1212 (phần công việc). Do đó
1x+1x+3=121x+1x+3=12
⇒2(x+3)+2x=x(x+3)⇒2(x+3)+2x=x(x+3)
⇔x2−x−6=0⇔x2−x−6=0
⇔(x−3)(x+2)=0⇔(x−3)(x+2)=0
Vậy x=3x=3 hoặc x=−2x=−2(loại)
Suy ra x+3=6x+3=6
Vậy tổ I và tổ II làm trong 33(h) và trong 66(h) thì xong.
Viết nhầm: Câu cuối phải là: Vậy tổ 1 và tổ 2 làm trong 3 và 6 giờ thì xong
Gọi thời gian làm riêng của tổ I và II lần lượt là x ( giờ ) và y ( giờ ) (x,y>0)
=> Nếu làm một mình trong một giờ thì tổ I làm được \(\frac{1}{x}\)công việc , tổ II làm được \(\frac{1}{y}\)công việc.
Ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{15}\\\frac{5}{x}+\frac{3}{y}=\frac{30}{100}\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=60\end{cases}}}\)(TMDK)
Vậy nếu làm riêng thì : tổ I hoàn thành trong 20 giờ
tổ II hoàn thành trong 60 giờ.