Tìm nghiệm của đa thức :
P(x)=x-3^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
f(x) = 0 => x3 - 2x2 - x + 2 = 0
=> x2. (x - 2) - (x - 2) = 0
=> (x2 - 1).(x - 2) = 0 => x2 - 1 = 0 hoặc x - 2 = 0
+) x2 - 1 = 0 => x = 1 hoặc x = -1
+) x - 2 = 0 => x = 2
Vậy đa thức có 3 nghiệm là: -1;1;2
\(x^3-4x^2+x+6=0\)
\(\Leftrightarrow x^3-5x^2+6x+x^2-5x+6=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)+\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x-2=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=2\\x=3\end{array}\right.\)
\(x=2\) là nghiệm của đa thức đã cho nên:
\(2^2-2m.2+1=0\)
\(\Leftrightarrow4m=5\Rightarrow m=\dfrac{5}{4}\)
Thay x=2 vào phương trình \(x^2-2mx+1=0\), ta được:
\(2^2-2m\cdot2+1=0\)
\(\Leftrightarrow-4m+5=0\)
\(\Leftrightarrow-4m=-5\)
hay \(m=\dfrac{5}{4}\)
Vậy: Để x=2 là nghiệm của đa thức \(x^2-2mx+1\) thì \(m=\dfrac{5}{4}\)
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
P(x) = 0 <=> x - 32 + 1 = 0
<=> x - 9 + 1 = 0
<=> x - 8 =0
<=> x =8
Vậy 8 là nghiệm của đa thức p(x)