K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

\(\frac{1}{1x3}+\frac{1}{3x5}+...+\frac{1}{95x97}+\frac{1}{97x99}\)

\(=\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+,,,+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}x\frac{98}{99}\)

\(=\frac{49}{99}\)

30 tháng 5 2016

Đặt A=1/3x1 + 1/3x5 + ......+ 1/95x97 + 1/97x99

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(2A=1-\frac{1}{99}\)

\(A=\frac{98}{99}:2\)

\(A=\frac{49}{99}\)

30 tháng 5 2016

Đặt A=1/3x1 + 1/3x5 + ......+ 1/95x97 + 1/97x99

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(2A=1-\frac{1}{99}\)

\(A=\frac{98}{99}:2\)

\(A=\frac{49}{99}\)

16 tháng 10 2015

B=1x3+3x5+5x7+7x9+...+95x97+97x99

= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)

= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2

= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)

= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)

Đặt : A = 12+32 +52+...+952+ 97

C =1+3 +5+...+95+97  

    tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B 

2 tháng 1 2018

Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)

\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)

\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)

\(=97\times99\times101+3\)

\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)

24 tháng 9 2019

6B=1x3x6+3x5x6+5x7x6+.....+97x99x6

6B=1x3x(5+1)+3x5x(7-1)+....+97x99x(102-95)

6B=1x3x5+1x3+3x5x7-3x5+....+97x99x101-95x97x99

6B=1x3x97x99x101

6B=969906

=>B=161651

15 tháng 1 2017

= 1-1/3 + 1/3-1/5+.......+1/97-1/99

=  1 - 1/99

= 98/99

15 tháng 8 2017

sao lại là 1- 1/3 + 1/3 -1/5 + ...... 1/97 - 1/99 hả bạn :|

9 tháng 4 2015

\(\frac{1}{1x3}+\frac{1}{3x5}+....+\frac{1}{97x99}\)=S

 

\(2S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+...+\frac{99-97}{97x99}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

\(S=\frac{2S}{2}=\frac{49}{99}\)