Cho đường tròn tâm O.Điểm A cố định ở ngoài đường tròn (O).Qua A kẻ một cát tuyến ABC cắt đường tròn (O) tại 2 điểm B và C (B nằm giữa A và C).Tiếp tuyến AM , AN tiếp xúc (O) tại M ; N thuộc (O) . H là trung điểm của BC.
a)Chứng minh : AM^2 = AB.AC
b)Chứng minh tứ giác AHMN nội tiếp
c)Đường thẳng qua B, song song với MA và cắt MN tại E.Chứng minh :HE // MC
d)Khi d quay quanh A thì trọng tâm của tam giác MBC chạy trên đường nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔAKM và ΔAMI có
góc AMK=góc AIM
góc MAK chung
=>ΔAKM đồng dạng với ΔAMI
=>AK/AM=AM/AI
=>AM^2=AI*AK
Xét ΔABM và ΔAMC có
góc AMB=góc ACM
góc BAM chung
=>ΔABM đồng dạng với ΔAMC
=>AB/AM=AM/AC
=>AM^2=AB*AC=AK*AI
a: Ta có: ΔOMN cân tại O
mà OA là đường cao
nên OA là phân giác củagóc MON
Xét ΔOMA và ΔONA có
OM=ON
góc MOA=góc NOA
OA chung
Do đó: ΔOMA=ΔONA
=>góc ONA=90 độ
=>AN là tiếp tuyến của (O)
b: Xét (O) có
KC,KB là tiếp tuyến
nên KC=KB
=>K năm trên trung trực của BC(1)
ΔOBC cân tại O
mà OI là trung tuyến
nên OI là trung trực của BC(2)
Từ (1), (2) suy ra O,I,K thẳng hàng
=>OK vuông góc với BC tại I
=>OI*OK=OB^2=ON^2
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
mà OM=ON
nên OA là trung trực của MN
=>OA vuông góc MN tại H
Xét ΔAHK vuông tại H và ΔAIO vuông tại I có
góc HAK chung
=>ΔAHK đồng dạng vớiΔAIO
=>AH/AI=AK/AO
=>AH*AO=AK*AI=AB*AC