Cho a,b,c là các số thỏa mãn 2018≤ a,b,c ≤2019. Tìm giá trị lớn nhất của biểu thức \(P=\left(a-b\right)^{2000}+\left(b-c\right)^{2000}+\left(c-a\right)^{2000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tham khảo:
https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-thoa-man-2018le-abcle2019-tim-gtln-cua-bieu-thuc-plefta-bright2000leftb-cright2000leftc-aright.253535226325
a + b + c = 0
<=> (a + b + c)^2 = 0
<=> a^2 + b^2 + c^2 + 2(ab + bc + ca) = 0
<=> a^2 + b^2 + c^2 = 0
<=> a = b = c = 0
=> Q = - 1 + 1 + 1 = 1
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\a-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x+y=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^{2020}\le x\\y^{2020}\le y\\z^{2020}\le z\end{matrix}\right.\)
\(P=x^{2020}+y^{2020}+z^{2020}\le x+y+z=2z\le2\)
\(\Rightarrow P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(2018;2018;2019\right);\left(2018;2019;2019\right)\) và hoán vị
ta có: a,b,c>0 mà a+b+c=1 \(\Rightarrow\left(1-a\right)\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a\left(a-b\right)^2\le\left(a-b\right)^2\)
tương tự và cộng theo vế: \(VT\le6\left(ab+bc+ca\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=2\left(a+b+c\right)^2=2\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Câu hỏi của nguyen thu phuong - Toán lớp 8 - Học toán với OnlineMath
a + b + c= 1 \(\Rightarrow\)1 - a = b + c > 0
Tương tự : 1 - b > 0 ; 1 - c > 0
Mà 1 + a = 1 + ( 1 - b - c ) = ( 1- b ) + ( 1 - c ) \(\ge\)\(2\sqrt{\left(1-b\right)\left(1-c\right)}\)
Tương tự : \(1+b\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\); \(1+c\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\ge8\)
Dấu " = : xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy GTNN của A là 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cách khác:
\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(b+a\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Áp dụng BĐT Cô si cho 2 số ta được:
\(A\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)
"=" <=> a = b = c = 1/3
Kết luận..
Dễ dàng chứng minh được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)
Ta có:
\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)
Áp dụng (1), ta được:
\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)
\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)
Chúng minh tương tự, ta được:
\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)
Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).
\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)
Từ (2), (3) và (4), ta được:
\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)
\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)
\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)
Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)
làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Không mất tính tổng quát giả sử \(a\ge b\ge c\)
đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x+y=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^{2000}\le x\\y^{2000}\le y\\z^{2000}\le z\end{matrix}\right.\)
\(\Rightarrow P=x^{2000}+y^{2000}+z^{2000}\le x+y+z=2z\le2\)
\(\Rightarrow P_{max}=1\) khi (x;y;z)=(0;1;1) và hoán vị
\(\Rightarrow\left(a;b;c\right)=\left(2018;2018;2019\right)\) và hoán vị
Max=2 bạn nhá