Cho tam giác nhọn ABC nội tiếp (O) đường kính AD. Tiếp tuyến của đường tròn (O) tại D cắt BC tại S. Tia SO cắt AB tại M, AC tại N. Chứng minh OM = ON.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này trong đề thi có nè...mà mình hỏi ko ai biết làm,giáo viên cũng kêu khó
Sorry bạn nha, sáng nay bận quá nên mình chỉ đưa ý tưởng sơ sơ thôi.
Vẽ \(OK\) vuông góc với \(BC\).
Thử CM \(KCD\) và \(OAM\) đồng dạng. \(KBD\) và \(OAN\) đồng dạng.
Dùng tỉ lệ cạnh suy ra đpcm.
ta co tg AMDN la hinh binh hanh vi có góc đối = nhau tung doi mot
dg cheo AD ; NM cat nhau tai 0 nen OM =ON
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D