K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2016

1.3/4

2.1/6

27 tháng 5 2016

1.a/b=2/3-(1/6-1/4)=3/4

2.a/b=1/12+1/3-1/4=1/6

25 tháng 7 2016

Đầu bài sai rồi

26 tháng 7 2016

đúng đề trong sách mà bạn

18 tháng 5 2020

câu 1b

Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*

Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d

suy ra: 2(3n-7) chia ht cho d ,  3(2n-5) chia ht cho d

suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d

dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1

Vậy......

          

18 tháng 5 2020

1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản 

Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1 

Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) )  = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1

=> \(\frac{3n-7}{2n-5}\) là phân số tối giản 

3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)

Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)

=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2

16 tháng 6 2021

Xét bài toán phụ sau:

Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)  \(\left(a,b,c\ne0\right)\)

Thật vậy

Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Bài toán được chứng minh

Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:

Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)

Vì \(2+1+\left(-3\right)=0\) nên:

\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)

Tương tự ta tính được:

\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)

\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)

\(\Rightarrow Q=161000-801\cdot200=800\)

30 tháng 5 2015

1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản, 

và A/B là phân số chưa tối giản) 

=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17= 

12252240 

Ta nhận thấy các phân số sau khi qui đồng đều có tử chia 

hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B 

chia hêt cho 11 => b chia hết cho 11(1) 

Bằng cách lý luận tương tự ta cũng có A không chia hết cho 

13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2) 

Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17 

là các số nguyên tố => đpcm

30 tháng 5 2015

1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản, 

và A/B là phân số chưa tối giản) 

=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17= 

12252240 

Ta nhận thấy các phân số sau khi qui đồng đều có tử chia 

hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B 

chia hêt cho 11 => b chia hết cho 11(1) 

Bằng cách lý luận tương tự ta cũng có A không chia hết cho 

13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2) 

Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17 

là các số nguyên tố => đpcm

26 tháng 7 2016

a)\(\frac{5}{6}-\frac{a}{b}+\frac{3}{4}=\frac{2}{3}\)

   \(\frac{5}{6}-\frac{a}{b}=\frac{2}{3}-\frac{3}{4}\)

   \(\frac{5}{6}-\frac{a}{b}=\frac{8}{12}-\frac{9}{12}\)

   Đề câu a hình như sai bạn à . 

\(\frac{1}{3}-\frac{1}{2}+\frac{a}{b}=\frac{1}{2}\)

\(\frac{2}{6}-\frac{3}{6}+\frac{a}{b}=\frac{1}{2}\)

  Đề b cũng sai luôn . 

28 tháng 7 2016

À, Mình nghiên cứu ra cách giải rồi nè!

a) \(\frac{5}{6}\) + \(\frac{2}{3}\) = \(\frac{a}{b}\) + \(\frac{3}{4}\)

    \(\frac{5}{6}\) + \(\frac{4}{6}\) = \(\frac{a}{b}\) + \(\frac{3}{4}\)

    \(\frac{9}{6}\) -  \(\frac{3}{4}\) = \(\frac{a}{b}\)

    \(\frac{a}{b}\) = \(\frac{3}{4}\)

Câu b cũng tương tự vậy đó

14 tháng 4 2018

Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé

31 tháng 5 2015

qui đồng ms biểu thức trên và cộng lại  ta có:

MS = 2.3.4.5. ...... 25 chia hết cho 13, 17, 19

13,17,19 đều là số nguyên tố nên MS chia hết cho 13x17x19 =4199.

bây giờ ta chỉ cần chứng minh TS không chia hết cho 4199 (để khi làm tối giản không mất 3 thừa số 13,17,19

ta có: 

TS = tổng các số hạng (24 số hạng) trong đó có 21 số hạng đều có chứa cả 3 số 13,17,19 nên chia hết cho 4199

A= tổng 3 số hạng còn lại chỉ chứa 2 trong 3 thừa số 13,17,19

A= 2.3.....12.14....17. ...25 + 2.3.4.......13.....16.18.19...25 + 2.3......13......17.18.20.....25

=2.3.....12.14...16.18.20.....25 (17.19+ 13.17 + 13.19)

=2.3.....12.14...16.18.20.....25  . 719

719 không chia hết cho 13,17,19 nên A không chia hết cho 13,17,19 

A không chia hết cho 13x17x19= 4199

vậy tử số không chia hết cho 4199 (đpcm)