1) Giá trị nhỏ nhất của phân thức:\(A=\frac{2x^2}{2x-1}\left(\frac{4x^2+1}{x}-4\right)+4\) là ?
2) Giá trị của x thỏa mãn: \(x+\frac{x}{x+2}+\frac{x+3}{x^2+5x+6}+\frac{x+4}{x^2+6x+8}-1=0\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
1/ \(B=\frac{2x^2-5x+4}{x^2-2x+1}=\frac{2x^2-5x+4}{\left(x-1\right)^2}\)
Đặt \(y=x-1\Rightarrow x=y+1\) thay vào B
\(B=\frac{2\left(y+1\right)^2-5\left(y+1\right)+4}{y^2}=\frac{2y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+2=\left(\frac{1}{y}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Đẳng thức xảy ra khi y = 2 <=> x = 3
Vậy min B = 7/4 khi x = 3
2/ \(C=\frac{x^2-6x+6}{x^2-2x+1}=\frac{x^2-6x+6}{\left(x-1\right)^2}\)
Tới đây bạn làm tương tự 1/
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
2) \(ĐKXĐ:x\notin\left\{-2;-3;-4\right\}\)
PT <=> \(x+\frac{x}{x+2}+\frac{x+3}{x^2+3x+2x+6}+\frac{x+4}{x^2+4x+2x+8}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{x\left(x+3\right)+2\left(x+3\right)}+\frac{x+4}{x\left(x+4\right)+2\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}-1=0\)
<=>\(x+\frac{x+1+1}{x+2}-1=0\)
<=>\(x+\frac{x+2}{x+2}-1=0\Leftrightarrow x+1-1=0\Leftrightarrow x=0\)
Vậy x=0 thì thỏa mãn PT