K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Xét tam giác ADB có : M là trung điểm của AB(gt) 

                                       N là trung điểm của AD(gt)

=> MN là đường trung bình của tam giác ADB ( đ/n) 

=> MN//DB và MN =1/2 DB ( t/c) 

Xét tam giác AMN và tam giác ABD có : MN // BD ( cmt)

tam giác AMN đồng dạng với tam giác ABD ( hq đ/y ta lét)   => SAMN/SABD=(1/2)^2=1/4   (1)

Xét tam giác ABD và tam giác CDBcó 

AB=CD( ABCD là hbh ) 

góc A = góc C (nt)

AD=cb(nt)

=> tam giác ABD = tam giác CDB (cgc)

=> tam giác ABD đồng dạng tam giác CDB(t/c)   

=> tam giác ABD=1/2 HBh ABCD(2)

Từ 1 2 => SAMN/SABCD=1/8

 

 

 

6 tháng 2 2022

Vẽ AH⊥BC⊥BC cắt MN tại H'

Ta có : AH'=HH'=12AH12AH(vì MN là trung điểm => AH′=12AHAH′=12AH)

Lại có:

SABC=12.AH.BC=60cm2SABC=12.AH.BC=60cm2 và SAMN=12AH′.MNSAMN=12AH′.MN.Mà

MN là đường trung bình của tam giác ABC=>MN=12BCMN=12BC

=>SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)

Vậy SAMN=15cm2

9 tháng 4 2017

Samn =1/2*1/2 Sabcd

Samn =1/4 Sabcd

30 tháng 6 2020

me mik là cung cự giải nè làm bn nha!

18 tháng 12 2014

Dễ thấy SABCD = 2SADC (1)

Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.

Tam giác ADC và tam giác CMD có chung đường cao kẻ từ C nên cho ta :\(\frac{S_{ADC}}{S_{CMD}}=\frac{AD}{MD}=2\)hay SADC = 2SCMD (2)

Tương tự : \(\frac{S_{CMD}}{S_{DME}}=\frac{CM}{ME}=3\)( vì E là trọng tâm của tam giác ADC ) hay SCMD = 3SDME (3)

Từ (1) (2) (3) suy ra SABCD = 12SDME = 12 m2

13 tháng 6 2019

a,Hình bình hành ABCD có AB=CD

⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN

Mặt khác, M,N lần lượt là trung điểm của AB và CD

Do đó, AM//CN

Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)

b, Tứ giác AMCN là hình bình hành

⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)

⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)

Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^

ΔEDNΔEDN và ΔKBMΔKBM có:

M2ˆ=N2ˆM2^=N2^

DN=BMDN=BM

B1ˆ=D1ˆB1^=D1^

⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)

⇒ED=KB⇒ED=KB (đpcm)

c, Gọi O là giao điểm của AC và BD.

ABCD là hình bình hành

⇒OA=OC⇒OA=OC

ΔCABΔCAB có:

MA=MBMA=MB

OA=OCOA=OC

MC cắt OB tại K

⇒⇒ K là trọng tâm của ΔCABΔCAB

Mặt khác, I là trung điểm của BC

⇒⇒ IA,OB,MC đồng quy tại K

Hay AK đi qua trung điểm I của BC (đpcm)

13 tháng 6 2019

A B M D C N E K

Mk vẽ ko đc đẹp lắm , xl nha . Chỗ AC bạn kẻ thêm 1 nét đứt và tên là O nha

9 tháng 1 2019

tau méch cô hoài nhá

9 tháng 1 2019

a) Xét tam giác ABD có :

 M là trung điểm của AB

 F là trung điểm của BD

=) MF là đường trung bình của tam giác ABD

=) MF//AD và MF=\(\frac{1}{2}\)AD    (1)

Xét tam giác tam giác ACD có :

 N là trung điểm CD

 E là trung điểm AC

=) NE là đường trung bình của tam giác ACD

=) NE//AD và NE=\(\frac{1}{2}\)AD     (2)

Từ (1) và (2) =) Tứ giác MENF là hình bình hành

a) Gọi H là chân đường vuông góc kẻ từ A xuống CD

Theo đề bài, ta có: AH=3(cm)

Xét hình bình hành ABCD có AH là đường cao ứng với cạnh CD(gt)

nên \(S_{ABCD}=AH\cdot CD=4\cdot3=12\left(cm^2\right)\)