Chứng tỏ các phân số sau đây = nhau:
\(\frac{56}{77},\frac{5656}{7777},\frac{565656}{777777}\)
ai làm đc mk tick cho
phải giải chi tiết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{52}{75}=\frac{52.101}{75.101}=\frac{5252}{7575};\frac{52}{75}=\frac{52.10101}{75.10101}=\frac{525252}{757575}\)
\(\frac{13}{15}=\frac{13.101}{15.101}=\frac{1313}{1515};\frac{13}{15}=\frac{13.10101}{15.10101}=\frac{131313}{151515}\)
\(\frac{ab}{cd}=\frac{101ab}{101cd}=\frac{abab}{cdcd};\frac{ab}{cd}=\frac{10101ab}{10101cd}=\frac{ababab}{cdcdcd}\)
ai k minh minh k lai
\(\frac{2323}{9999}=\frac{2323:101}{9999:101}=\frac{23}{99}\)(1)
\(\frac{232323}{999999}=\frac{232323:10101}{999999:10101}=\frac{23}{99}\)(2)
Từ (1) và (2) =>\(\frac{23}{99}=\frac{2323}{9999}=\frac{232323}{999999}\)
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)
<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)
<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)
<=> 673n = 224.3(n+4)
<=> 673n = 224.3.n + 224.3.4
<=> 673n = 672n + 2688
<=> 673n - 672n = 2688
<=> n = 2688
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(\text{Ta có: }\frac{5656}{7777}=\frac{5656:101}{7777:101}=\frac{56}{77}\left(1\right)\)
\(\frac{565656}{777777}=\frac{565656:10101}{777777:10101}=\frac{56}{77}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{56}{77}=\frac{5656}{7777}=\frac{565656}{777777}\)
\(\frac{5656}{7777}\)=\(\frac{56x101}{77x101}\)=\(\frac{56}{77}\)
\(\frac{565656}{777777}\)=\(\frac{56x10101}{77x10101}\)=\(\frac{56}{77}\)
Suy ra \(\frac{56}{77}\)=\(\frac{5656}{7777}\)=\(\frac{565656}{777777}\)