Cho góc nhọn xOy . Trên tia Ox lấy hai điểm A và B ( A năm giữa O ,B ) . Trên Oy lấy hai điểm C và D ( C nằm giữa O , D ) sao cho OA = OC và OB = OD . Chứng Minh
a, Tam giác AOD = tam giác COB
b, Tam giác ABD = tam giác CDB
c, Gọi I là giao điểm của AD và BC . Chứng minh IA = IC ; IB = ID
vẽ hình và trình bày cách làm nữa nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Xét tam giác AOD và COB có:
\(AO=CO\) (giả thiết)
\(OD=OB\) (giả thiết)
\(\widehat{O}\) chung
\(\Rightarrow \triangle AOD=\triangle COB (c.g.c)\) (đpcm)
b)
Vì \(OA=OC; OB=OD\Rightarrow OB-OA=OD-OC\) hay \(AB=CD\)
\(OB=OD\) nên tam giác OBD cân tại O. Do đó \(\widehat{OBD}=\widehat{ODB}\) hay \(\widehat{ABD}=\widehat{CDB}\)
Xét tam giác ABD và CDB có:
\(BD\) chung
\(\widehat{ABD}=\widehat{CDB}\) (cmt)
\(AB=CD\) (cmt)
Do đó $\triangle ABD=\triangle CDB$ (c.g.c)
Ta có đpcm.
a, xét tma giác OAD và tam giác OBC có: góc O chung
OA = ob (Gt)
OC = OD (gt)
=> tam giác OAD = tam giác OBC (c-g-c)
b, tam giác OAD = tam giác OBC (câu a)
=> AD = BC (đn) (1)
OA = OB (gt)
OC = OD (gt)
AC = OC - OA
BD = OD - OB
=> AC = BD
xét tam giác BCD và tam giác ACD có: CD chung
(1)
=> tam giác BCD = tam giác ACD (c-c-c)
=> góc CAD = góc CBD (Đn)
a; Xét 2 tam giác AOD và COB có
OA=OC(gt)
OB=OD(gt)
góc O chung
\(\Rightarrow\Delta AOD=\Delta OCD\)(c.g.c)
\(\Rightarrow\)AD=CB(2 cạnh tương ứng)
b; vì OB=OD mà OA=OC \(\Rightarrow\)AB=CD
Xét 2 tam giác ABD và CDB có
AB=CD
AD=CB
DB là cạnh chung
\(\Rightarrow\)\(\Delta ABD=\Delta CDB\)(c.c.c)
c; tự làm dễ rồi