Một xe tăng có khối lượng tổng cộng M = 8 tấn, trên xe có một khẩu súng đại bác nặng đang đứng yên, có nòng súng hướng lên hợp với phương ngang một góc 60 . Khi súng bắn một viên đạn khối lượng m kg 2 bay dọc khỏi nòng súng với vận tốc v = 500 m/s. Bỏ qua ma sát. Xe giật lùi với tốc độ bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Chọn hệ trục Ox như hình vẽ
Phương trình bảo toàn véc tơ động lượng cho hệ theo Ox
Vì trước khi bắn hệ đứng yên
Chiếu phương trình (*) lên Ox ta được: 0 = -p’1 + p’2.cos60o
Thay số ta được:
Chọn C.
Chọn hệ trục Ox như hình vẽ
Phương trình bảo toàn véc tơ động lượng cho hệ theo Ox
Chọn chiều dương là chiều chuyển động của viên đạn
ÁP dụng định luật bảo toàn động lượng ta có:
\(m_2v_2cos60-m_1v_1=0=>v_2=\dfrac{m_1v_1}{m_2cos60}=\dfrac{7500.1}{20.cos60}=750(m/s)\)
=> Chọn B
Chọn chiều dương là chiều nòng súng hướng phía trc.
Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)
\(\Rightarrow m_1\cdot v_1\cdot cos45^o+m_2\cdot v_2=0\)
\(\Rightarrow4000\cdot v_1\cdot cos45^o+10\cdot500=0\)
\(\Rightarrow v_1\approx1,77\)m/s
Phương trình bảo toàn vecto động lượng cho hệ theo Ox ( Vì theo Ox khi hợp lực tác dụng vào vật theo phương Ox bị triệt tiêu ) O---------->x
\(\overrightarrow{0}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
Vì trước khi bắn hệ đứng yên: Chiếu phương trình lên trục Ox ta được: \(0=-p_1+p_2\cos\left(60^0\right)\) Thay số:
\(0=-m_1v_1+m_2v_2\cos\left(60^0\right)\Rightarrow v_2=\dfrac{m_1v_1}{m_2\cos\left(60^0\right)}\) Thay số nốt hộ mình là ra :D
+ Chiều dương là chiều chuyển động của đạn.
+ Toa xe đứng yên v = 0 → p = 0
+ Theo định luật bảo toàn động lượng:
m 1 + m 2 + m 3 v = m 1 + m 2 v / + m 3 v 0
⇒ v / = m 1 + m 2 + m 3 v − m 3 v 0 m 1 + m 2 = 0 − 1.400 130 + 20 ≈ − 2 , 67 m / s
Toa xe chuyển động ngược chiều với chiều viên đạn
Chọn đáp án D
Chiều (+) là chiều CĐ của đạn:
a. Toa xe đứng yên v = 0 p = 0
Theo định luật bảo toàn động lượng ta có:
( m 1 + m 2 + m 3 ) v = ( m 1 + m 2 ) v / + m 3 v 0 ⇒ v / = ( m 1 + m 2 + m 3 ) v − m 3 . v 0 m 1 + m 2 = 0 − 1.400 130 + 20 ≈ − 2 , 67 m / s
Toa xe CĐ ngược chiều với chiều viên đạn
b. Theo định luật bảo toàn động lượng ta có:
( m 1 + m 2 + m 3 ) v 1 = ( m 1 + m 2 ) v / + m 3 ( v 0 + v 1 ) ⇒ v / = ( m 1 + m 2 + m 3 ) v 1 − m 3 . ( v 0 + v 1 ) m 1 + m 2 ⇒ v / = ( 130 + 20 + 1 ) .5 − 1. ( 400 + 5 ) 130 + 20 ≈ 2 , 33 ( m / s )
Toa xe CĐ theo chiều bắn nhưng vận tốc giảm đi.
c. Theo định luật bảo toàn động lượng ta có
− ( m 1 + m 2 + m 3 ) v 1 = ( m 1 + m 2 ) v / + m 3 ( v 0 − v 1 ) ⇒ v / = − ( m 1 + m 2 + m 3 ) v 1 − m 3 . ( v 0 − v 1 ) m 1 + m 2 ⇒ v / = − ( 130 + 20 + 1 ) .5 − 1. ( 400 − 5 ) 130 + 20 ≈ − 7 , 67 ( m / s )
Vận tốc của toa vẫn theo chiều cũ và tăng tốc.
+ Theo định luật bảo toàn động lượng:
m 1 + m 2 + m 3 v 1 = m 1 + m 2 v / + m 3 v 0 + v 1
⇒ v / = m 1 + m 2 + m 3 v 1 − m 3 v 0 + v 1 m 1 + m 2 = 130 + 20 + 1 .5 − 1 400 + 5 130 + 20 ≈ 2 , 33 m / s
+ Toa xe chuyển động theo chiều bắn nhưng vận tốc giảm đi
Chọn đáp án D
Giả sử thời gian đạn rời khỏi nòng súng là (rất nhỏ).
Giả sử nội lực của hệ đạn + nòng súng là N.
N làm biến thiên động lượng của đạn (đề đã bỏ qua tác động của trọng trường với đạn).
Hợp lực của N và F ma sát và P làm biến thiên động lượng của nòng.
Chiếu lên phương ngang.
Thay N từ pt trên vào ta tìm được V.
Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{0}\)
\(\Rightarrow p_2\cdot cos\alpha-p_1=0\)
\(\Rightarrow m_2\cdot v_2\cdot cos\alpha-m_1\cdot v_1=0\)
\(\Rightarrow v_2=\dfrac{m_1\cdot v_1}{m_2\cdot cos\alpha}=\dfrac{8000\cdot500}{2\cdot cos60^o}=4\cdot10^6\)m/s