Cho A= 1/2^2+1/3^2+1/4^2+...+1/n^2
CMR:A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
Ta có:
\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4}) ...(1-\frac{1}{1+2+3+...+n}) \)
Xét công thức tổng quát ta có:
\(1-\frac{1}{1+2+3+...+n}=\frac{2+3+...n.}{1+2+3+..+n} =\frac{n(n+1)-2}{2}:\frac{n(n+1)}{2}=\frac{(n+2)(n-1)}{n(n+1)} \)
Áp dụng ct tổng quá ta có:
A=\(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{(n-1)(n+2)}{n(n+1)} \)=\(\frac{(1.2.3...(n-1))(4.5.6...(n+2))}{(2.3.4...n)(3.4.5...(n+1))} \)=\(\frac{n+2}{3n} \)
=>A:B=\(\frac{n+2}{3n}:\frac{n+2}{n}=\frac{1}{3} \)
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
A <\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
A<\(1-\frac{1}{n}\)=\(\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}< 1\)
Vậy A < 1
Ta có:
1/22 < 1/1.2
1/32 < 1/2.3
1/42 < 1/3.4
..................
=> 1/n2 < 1/n(n-1)
=> 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n-1)
=> A < 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/n-1 + 1/n
=> A < 1 - 1/n
Vơi n thuộc N* => 1 - 1/n < 1 ( vì 1/n lúc đó lớn hơn 0 )
=> A < 1 - 1/n < 1
đpcm