Hai vòi nước cùng chảy vào một cái bể cạn thì sau 48 phút đầy bể. Nếu mở riêng vòi thứ nhất thì sau 1 giờ 20 phút đầy bể. Hỏi nếu chỉ mở vòi thứ hai chảy vào bể này thì sau 30 phút được mấy phần bể?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi 2 chảy một mình đầy bể là x
Theo đề, ta có:
\(\dfrac{1}{x}+\dfrac{1}{\dfrac{4}{3}}=\dfrac{4}{5}\)
=>1/x=1/20
=>x=20
Vậy: Sau 20 giờ thì vòi 2 chảy một mình đầy bể
Sau 30 phút thì chảy được 1/40 bể
Gọi thời gian vòi 2 chảy một mình đầy bể là x
Theo đề, ta có:
\(\dfrac{1}{x}+\dfrac{1}{\dfrac{4}{3}}=\dfrac{4}{5}\)
=>1/x=1/20
=>x=20
Vậy: Sau 20 giờ thì vòi 2 chảy một mình đầy bể
Sau 30 phút thì chảy được 1/40 bể
Trong 1 phút ,cả 2 vòi chảy được 1/48 bể
Trong 1 phút,vòi thứ nhất chảy được 1/80 bể
Trong 1 phút,vòi thứ hai chảy được 1/48 - 1/80 = 1/120 bể
Trong 30 phút,vòi thứ hai chảy được 30.1/120 = 1/4 bể
- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)
Đổi 1h30p=90p
- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:
\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)
- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:
\(15x+20y=\dfrac{1}{5}\left(2\right)\)
(1), (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)
Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.
Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.
Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.
(Điều kiện: x, y > 80 )
Trong 1 phút vòi thứ nhất chảy được bể; vòi thứ hai chảy được bể.
Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:
Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :
Ta có hệ phương trình:
Đặt . Khi đó hệ phương trình trở thành :
QUẢNG CÁO
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)
Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.
(Điều kiện: x, y > 80 )
Trong 1 phút vòi thứ nhất chảy được 1/x bể; vòi thứ hai chảy được 1/y bể.
Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:
Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :
Ta có hệ phương trình:
Đặt . Khi đó hệ phương trình trở thành :
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)
Kiến thức áp dụng
Giải bài toán bằng cách lập hệ phương trình :
Bước 1 : Lập hệ phương trình
- Chọn các ẩn số và đặt điều kiện thích hợp
- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn
- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.
- Từ các phương trình vừa lập rút ra được hệ phương trình.
Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).
Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x,y
Theo đề, ta có: hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{2}{3}\\\dfrac{1}{4x}+\dfrac{1}{3y}=\dfrac{1}{5}\end{matrix}\right.\)
Đặt 1/x=a; 1/y=b
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=\dfrac{2}{3}\\\dfrac{1}{4}a+\dfrac{1}{3}b=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4}{15}\\b=\dfrac{2}{5}\end{matrix}\right.\)
=>x=15/4; y=5/2
Gọi thời gian vòi 2 chảy một mình đầy bể là x
Theo đề, ta có:
\(\dfrac{1}{x}+\dfrac{1}{\dfrac{4}{3}}=\dfrac{4}{5}\)
=>1/x=1/20
=>x=20
Vậy: Sau 20 giờ thì vòi 2 chảy một mình đầy bể
Sau 30 phút thì chảy được 1/40 bể