K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

Gọi G là giao điểm của DE và CH.  I là giao điểm của  DE và OC. F là giao điểm của OC với (O)

Xét tam giác CGI và tam giác COH có:

\(\hept{\begin{cases}\widehat{HCO}chung\\\widehat{CIG}=\widehat{CHO}=90^0\end{cases}\Rightarrow\Delta CGI~\Delta COH\left(g-g\right)}\)

\(\Rightarrow\frac{CG}{CI}=\frac{CO}{CH}\)

\(\Rightarrow CG.CH=CO.CI\)

\(\Rightarrow2.CG.CH=2.CO.CI=CF.CI\)(1)

Áp dụng hệ thức lượng trong tam giác CEF vuông tại E có EI là đường cao ta có:

\(CF.CI=CE^2=CH^2\)(2) 

Từ (1) và (2) \(\Rightarrow2.CG.CH=CH^2\)

\(\Rightarrow2CG=CH\)

\(\Rightarrow G\)là trung điểm của CH mà DE cắt CH tại G

\(\Rightarrow DE\)đi qua trung điểm của CH

30 tháng 12 2020

a) Gọi N là trung điểm của OC

Ta có: ΔOHC vuông tại H(CH⊥AB tại H)

mà HN là đường trung tuyến ứng với cạnh huyền OC(N là trung điểm của OC)

nên \(HN=\dfrac{OC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(ON=CN=\dfrac{OC}{2}\)(N là trung điểm của OC)

nên HN=ON=CN(1)

Ta có: ΔOCI vuông tại I(OI⊥AC tại I)

mà IN là đường trung tuyến ứng với cạnh huyền OC(N là trung điểm của OC)

nên \(IN=\dfrac{OC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CN=ON=\dfrac{CO}{2}\)(N là trung điểm của CO)

nên IN=CN=ON(2)

Từ (1) và (2) suy ra NI=NO=NC=NH

hay I,O,C,H cùng thuộc một đường tròn(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAO vuông tại A có AI là đường cao ứng với cạnh huyền OM, ta được:

\(OI\cdot OM=OA^2\)

mà OA=R(A∈(O;R))

nên \(OI\cdot OM=R^2\)(đpcm)

Vì OM=2R và R=6cm nên \(OM=2\cdot6cm=12cm\)

Thay OM=12cm và R=6cm vào biểu thức \(OI\cdot OM=R^2\), ta được:

\(OI\cdot12=6^2=36\)

hay OI=3cm

Vậy: Khi OM=2R và R=6cm thì OI=3cm

1: góc AKP+góc AHP=180 độ

=>AKPH nội tiếp

2: góc KAC=1/2*sđ cung KC

góc OMB=góc CBK(MH//CB)

=>góc OMB=góc KAC

NV
2 tháng 4 2023

a.

\(DH\perp AB\left(gt\right)\Rightarrow\widehat{DHB}=90^0\Rightarrow D;H;B\) cùng thuộc đường tròn đường kính DB

\(\widehat{AEB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O)) \(\Rightarrow\widehat{DEB}=90^0\)

\(\Rightarrow D;E;B\) cùng thuộc đường tròn đường kính DB

\(\Rightarrow\) Tứ giác BHDE nội tiếp đường tròn đường kính DB

b.

\(\widehat{ACB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ \(\widehat{BAC}\))

Mà \(\widehat{ABC}=\widehat{AEC}\) (cùng chắn cung AC của (O)

\(\Rightarrow\widehat{ACH}=\widehat{AEC}\)

Xét hai tam giác ADC và ACE có: \(\left\{{}\begin{matrix}\widehat{ACH}=\widehat{AEC}\left(cmt\right)\\\widehat{CAD}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g.g\right)\Rightarrow\dfrac{AD}{AC}=\dfrac{CD}{EC}\Rightarrow AD.EC=CD.AC\)

c.

Cũng theo cmt \(\Delta ADC\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}\Rightarrow AD.AE=AC^2\)

Áp dụng hệ thức lượng trong tam giác vuông ABC với đường cao CH:

\(BC^2=BH.BA\)

\(\Rightarrow AD.AE+BH.BA=AC^2+BC^2=AB^2=2022^2\)

NV
2 tháng 4 2023

loading...