K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2016

ĐKXĐ : \(x\ne\frac{3}{2};-1;3\)

\(< =>\frac{x\left(2x+2\right)+x\left(2x-3\right)}{\left(2x-3\right)\left(2x+2\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(< =>\frac{2x^2+2x+2x^2-3x}{\left(2x-3\right)2\left(x+1\right)}=\frac{2x.2\left(2x-3\right)}{\left(x+1\right)\left(x-3\right)2\left(2x-3\right)}\)

\(< =>\frac{\left(4x^2-x\right)\left(x-3\right)}{\left(2x-3\right)2\left(x+1\right)\left(x-3\right)}=\frac{8x^2-12x}{\left(2x-3\right)2\left(x+1\right)\left(x-3\right)}\)

\(=>4x^3-12x^2-x^2+3x=8x^2-12x\)

\(< =>4x^3-13x^2+3x-8x^2+12x=0\)

\(< =>4x^3-21x^2+15x=0\)

\(< =>x\left(4x^2-21x+15\right)=0\)

\(< =>x\left(4x^2-\frac{21}{4}.2.2x+\frac{441}{16}-\frac{201}{16}\right)=0\)

\(< =>x\left(\left(2x-\frac{21}{4}\right)^2-\sqrt{\frac{201}{16}}^2\right)=0\)

\(< =>x\left(2x-\frac{21}{4}-\frac{\sqrt{201}}{4}\right)\left(2x-\frac{21}{4}+\frac{\sqrt{201}}{4}\right)=0\)

\(< =>x\left(2x-\frac{21+\sqrt{201}}{4}\right)\left(2x-\frac{21-\sqrt{201}}{4}\right)=0\)

\(< =>\hept{\begin{cases}x=0\\2x-\frac{21+\sqrt{201}}{4}=0\\2x-\frac{21-\sqrt{201}}{4}=0\end{cases}< =>\hept{\begin{cases}x=0\\x=\frac{21+\sqrt{201}}{8}\\x=\frac{21-\sqrt{201}}{8}\end{cases}}}\)(thỏa mãn ĐKXĐ)

2 tháng 3 2019

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

25 tháng 2 2020

giup minh voi cac bạn

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

8 tháng 5 2017

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

8 tháng 5 2017

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

26 tháng 2 2022

hic, mk chx học

6 tháng 5 2019

a)\(\frac{x+3}{6}\)+\(\frac{x-2}{10}\)>\(\frac{x+1}{5}\)

<=> \(\frac{5\left(x+3\right)}{30}\)+\(\frac{3\left(x-2\right)}{30}\)>\(\frac{6\left(x+1\right)}{30}\)

<=>5(x+3)+3(x-2)>6(x+1)

<=>5x+15+3x-6>6x+6

<=>8x-6x           >6-15+6

 <=>2x               >-3

<=>x                  >-1,5    

Vậy tập nghiệm của bất phương trình là {x/x>-1,5}

6 tháng 5 2019

b)(x+1)(2x-2)-3<-5x-(2x+1)(3-x)

<=> 2x\(^2\)-2x+2x-2-3<-5x-6x+2x\(^2\)-3+x

<=>2x\(^2\)-2x\(^2\)+5x+6x-x<2+3-3

<=>10x <2

<=>x   <\(\frac{1}{5}\) 

Vậy tập nghiệm của bất phương trình là {x/x<\(\frac{1}{5}\)}

28 tháng 2 2020
https://i.imgur.com/V92CPVX.jpg
28 tháng 2 2020
https://i.imgur.com/yXrzVbQ.jpg