K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

=>A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Và đến đây là hết biik giải nữa

24 tháng 4 2016

100A = \(\frac{99}{1}+1+\frac{98}{2}+1+...+\frac{1}{99}+1-99\)

100A=\(\frac{100}{1}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}-99\)

100A =\(\left(\frac{100}{2}+\frac{100}{3}+..+\frac{100}{99}+100-99\right)\)

100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\right)\)

100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\right)\)

100A=100.\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

14 tháng 4 2016

bạn điền thêm vào như thế này:

...................

A= 1-1/2^99 <1

Hay A<1

Vậy.........

14 tháng 4 2016

Có. Chúng ta lí luận:

Vì \(1-\frac{1}{2^{99}}>1\)

\(\Rightarrow A>1\)

12 tháng 10 2016

giải câu 3

30 tháng 8 2016

Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)

              \(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)

               .......

               \(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)

              \(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)

=> A không phải là số tự nhiên ( đpcm )

25 tháng 5 2016

Ta có: 

1/49 + 1 = 50/49 

2/48 + 1 = 50/48 

3/47 + 1 = 50/47 



47/3 + 1 = 50/3 

48/2 + 1 = 50/2 

0 + 1 = 50/50 

Cộng vế theo vế dãy đẳng thức trên ta được: 

1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50 

⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50) 

⇒ B = 50A 

⇒ A/B = 1/50 

 

25 tháng 5 2016

Ta có: 

1/49 + 1 = 50/49 

2/48 + 1 = 50/48 

3/47 + 1 = 50/47 



47/3 + 1 = 50/3 

48/2 + 1 = 50/2 

0 + 1 = 50/50 

Cộng vế theo vế dãy đẳng thức trên ta được: 

1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50 

⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50) 

⇒ B = 50A 

⇒ A/B = 1/50 

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

 \(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)

\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)

\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)