cho hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại O . Đường thẳng qua O và // với đáy AB cắt cạnh bên AD,BC theo thứ tự ttaij M,N
a. CMR :OM=ON
b. cmr \(\dfrac{\text{1}}{\text{AB}}+\dfrac{\text{1}}{\text{C\text{D}}}=\dfrac{\text{2}}{\text{MN}}\)
c. Biết Saob=\(2011^2\)(đv diện tích) Scod=\(2012^2\)Tính Sabcd
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MN=BN/NC
=>AM/AD=BN/BC(1)
Xét ΔADC có MO//DC
nên MO/DC=AM/AB(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra MO=ON(đpcm)
b:
Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)
MN=2ON=2OM
\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)
mà OM/AB=DO/DB
và ON/CD=BO/BD
nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)