Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC ở D và cắt đường vẽ từ C vuông góc với AC tạ E.
a) So sánh AB và CE
b) Kẻ DH vuông góc BC. So sánh AD và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBDA vuông tại A và ΔBDH vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBDA=ΔBDH(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔBDA=ΔBDH(cmt)
nên DA=DH(hai cạnh tương ứng)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
á hu hu cứu
Cái này trong sách lớp 7 hay là câu hỏi bên ngoài