chứng minh răng căn của 1 + căn của 2 + .... + căn của 9 < 12 + 5 nhân căn của 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\\ =\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(\left(x^2\right)^2-2x^2+1\right)+4}\\ =\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\)
do: \(+\left(x+1\right)^2\ge0\Rightarrow3.\left(x+1\right)^2+9\ge9\Rightarrow\sqrt{3\left(x+1\right)^2+9}\ge\sqrt{9}=3\)(1)\(+\left(x^2-1\right)^2\ge0\Rightarrow5\left(x^2-1\right)^2+4\ge4\Rightarrow\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{4}=2\)(2)
từ (1) và(2)\(\Rightarrow\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
câu b bạn làm tương tự
\(\text{a, Ta có:}\)
\(3\sqrt{7}=\sqrt{3^27}=\sqrt{63}\)
\(9=\sqrt{81}\)
\(\text{Vì}:\sqrt{81}>\sqrt{63}\Rightarrow3\sqrt{7}< 9\)
\(\text{b, Vì}\) \(-\sqrt{3}>-\sqrt{5}\Rightarrow-\sqrt{\sqrt{3}}>-\sqrt{\sqrt{5}}\)
\(c,\sqrt{51}-\sqrt{3}\approx5,4>5\)
\(d.\text{Vì}\) \(5>\sqrt{5}\Rightarrow\sqrt{85+5}>\sqrt{85+\sqrt{5}}\)
Với \(a,b>0;a\ne b\)ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}< \sqrt{2\left(a+b\right)}\)
Áp dụng ta được:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< \sqrt{2\left(2+6\right)}+\sqrt{2\left(12+20\right)}\)
\(=\sqrt{16}+\sqrt{64}=4+8=12\)
Ta có đpcm.
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)