Cho tam giác ABC vuông tại A, AB=12cm, AC=16cm, vẽ đường cao AH
a)CM:tam giác HAC đồng dạng với tam giác ABC
b)Tính BC và HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó:ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)
c: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó; BD=60/7(cm); CD=80/7(cm)
a: Sửa đề: HBA
Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vớiΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
Do đó: ΔHAC\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)
a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=20/7
=>DB=60/3cm; DC=80/7cm
b: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
c: HC=16^2/20=256/20=12,8cm
a, Xét tam giác HAC và tam giác ABC
^C _ chung
^AHC = ^BAC = 900
Vậy tam giác HAC ~ tam giác ABC (g.g)
=> HC/AC=AC/BC ( cạnh tương ứng tỉ lệ )
=> AC^2 = HC . BC
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=20cm\)
Ta có AC^2 = HC . BC (cmt)
Thay vào ta được \(16^2=HC.20\Rightarrow HC=\dfrac{16^2}{20}=\dfrac{64}{5}cm\)
a. xét tam giác vuông HAC và tam giác vuông ABC, có:
góc C: chung
Vậy tam giác vuông HAC đồng dạng tam giác vuông ABC
b. Áp dụng định lí pitago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)
ta có: tam giác HAC đồng dạng tam giác ABC
\(\Rightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)
\(\Leftrightarrow HC.BC=AC^2\)
\(\Leftrightarrow20HC=16^2\)
\(\Leftrightarrow20HC=256\)
\(\Leftrightarrow HC=\dfrac{64}{5}cm\)