Giải pt chứa dấu giá trị tuyệt đối:
lx+4l-2lx-1l=5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(+) Nếu -2x+4>=0 <=> -2x >= -4<=> x<= -2 thì |-2x+4| = -2x+4:
Ta có pt: -2x+4-2(x+1)=-5x+1 <=> -2x+4-2x-2+5x-1=0 <=> x+1=0 <=> x=-1 (Ko thỏa mãn đk)
(+) Nếu -2x+4<0 <=> -2x<-4 <=> x>-2 thì |-2x+4|=-(-2x+4)=2x-4:
Ta có pt: 2x-4-2(x+1)=-5x+1 <=> 2x-4-2x-2+5x-1 =0 <=> 5x-7=0 <=> x= 7/5 (Thỏa mãn đk)
Vay tap nghiem cua pt la S={7/5}
\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+x+x+x\right)+1+2+3+4=20\\\left(x+x+x+x\right)+1+2+3+4=-20\text{}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=20\\x+10=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=20-10\\x=-20-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-30\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=20\)
\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left[x+x+x+x\right]+\left[1+2+3+4\right]=20\\\left[x+x+x+x\right]+\left[1+2+3+4\right]=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x+10=20\\4x+10=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-30\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=5\\2x=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{15}{2}\end{cases}}\)
Vũ Bách Quang sai từ dòng thứ ba đến cuối . Xem kĩ lại nhé
|1-2x|-x=7+5x
|1-2x|=7+5x+x
|1-2x|=7+6x
Xét \(x\le0,5\), khi đó ta có 1-2x=7+6x
=>6x+2x=1-7
=>8x=-6
=>x=-3/4 ( thỏa mãn \(x\le0,5\)
Xét \(x>0,5\), khi đó ta có 1-2x=-7-6x
=>-6x+2x=1+7
=>-4x=8
=>x=-2 ( ko thỏa mãn \(x>0,5\), loại)
Vậy x=-3/4
a,|x-1|=3x+2
=>x-1=3x+2 hoặc x-1=-3x-2
x-3x=2+1 hoặc x+3x=-2+1
-2x=3 hoặc 4x=-1
x=-3/2 hoặc x=-1/4
CM: 5x^2 +15x+20>0
Ta có: 5x^2 +15x +20
= 5( x^2 + 3x +4)
=5[(x^2 + 2.x.3/2 +9/4) -9/4 +4 ]
=5(x+3/2)^2 -7/4
Vì (x+3/2)^2 >0 với mọi x
=>5(x+3/2)^2 >0 với mọi x
=> 5(x+3/2)^2 - 7/4 >0 với mọi x
\(\left|x+1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x^2+12x+9\)
\(\Leftrightarrow x^2+2x+1-4x^2-12x-9=0\)
\(\Leftrightarrow-3x^2-10x-8=0\)
\(\Leftrightarrow-3x^2-6x-4x-8=0\)
\(\Leftrightarrow-3x\left(x+2\right)-4\left(x+2\right)=0\)
\(\Leftrightarrow-\left(x+2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy .............
TH 1:ta có |x+1|=x+1 và |2x+3|=2x+3 khi x≥-1
ta có p/t mới:x+1=2x+3
⇔x-2x=3-1
⇔-x=2 hay x=-2 (loại)
TH 2:ta có |x+1|=-x-1 và |2x+3|=-2x-3 khi x<-1.5
ta có p/t mới:-x-1=-2x-3
⇔-x+2x=-3+1
⇔x=-2 (thão mãn)
TH 3:ta có |x+1|=-x-1 và |2x+3|=2x+3 khi -1>x ≥-1,5
ta có p/t mới:-x-1=2x+3
⇔-x-2x=3+1
⇔-3x=4
⇔x=\(\frac{-4}{3}\) (thão mãn)
TH 4:ta có |x+1|=x+1 và |2x+3|=-2x-3 khi -1,5>x≥-1 (loại)
Vậy tập nghiệm của p/t là: S={−2;\(\frac{-4}{3}\)}