Cho pt: X^2 - 2(m-1)x + m^2 - 2m = 0
tìm M để pt vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)
\(=16m^2-16m-8\)
Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)
bạn ơi , mik tưởng 1 nhân vs 1 vẫn bằng 1 chứ sao lại bằng 4 ạ?
Bổ sung thêm cho bạn Song Thư:
∆ = b² - 4ac = [-(m + 3)]² - 4(2m + 2)
= m² + 6m + 9 - 8m - 8
= m² - 2m + 1
= (m - 1)² ≥ 0 với mọi m
Vậy phương trình luôn có hai nghiệm phân biệt
\(x^2-\left(m+3\right)x+2m+2=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+3\\x_1x_2=\dfrac{c}{a}=2m+2\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-13=0\)
\(\Leftrightarrow\left(m+3\right)^2-2\left(2m+2\right)-13=0\)
\(\Leftrightarrow\left(m^2+6m+9\right)-4m-4-13=0\)
\(\Leftrightarrow m^2+2m-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
PT có 2 nghiệm phân biệt
`<=>Delta'>0`
`<=>(m-1)^2-(m+1)>0`
`<=>m^2-2m+1-m-1>0`
`<=>m^2--3m>0`
`<=>m(m-3)>0`
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m-3>0\\\end{cases}\\\begin{cases}m<0\\m-3<0\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m>3\\\end{cases}\\\begin{cases}m<0\\m<3\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}m>3\\m<0\end{array} \right.$
Vậy m>3 or m<0 thì PT có 2 nghiệm phân biệt
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
Lời giải:
Để pt có 1 nghiệm $x=-1$ thì:
$(-1)^2-2(m-1)(-1)+m-5=0$
$\Leftrightarrow 1+2(m-1)+m-5=0$
$\Leftrightarrow m=2$
Khi đó, pt trở thành:
$x^2-2x-3=0$
$\Leftrightarrow (x+1)(x-3)=0$
$\Leftrightarrow x=-1$ hoặc $x=3$
Vậy nghiệm còn lại là $x=3$
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)
\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)
Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)
Do đó:
a.
Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm
TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)
TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)
b.
Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)
\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)
c.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)
d.
Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)
À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa
Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)
\(\Rightarrow m=-8\)
Δ=(-2m)^2-4(m^2-m+1)
=4m^2-4m^2+4m-4=4m-4
Để PT có 2 nghiệm thì 4m-4>=0
=>m>=1
x1^2+2mx2=9
=>x1^2+x2(x1+x2)=9
=>x1^2+x2^2+x1x2=9
=>(x1+x2)^2-x1x2=9
=>4m^2-m^2+m-1=9
=>3m^2+m-10=0
=>3m^2+6m-5m-10=0
=>(m+2)(3m-5)=0
=>m=-2(loại) hoặc m=5/3(nhận)
\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=m^2-2m+1-m^2+2m=1>0\)
vậy pt có 2 nghiệm pb
hay ko có gtri m để pt vô nghiệm
\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=m^2-2m+1-m^2+2m=1>0.\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi x thuộc R.
\(\Rightarrow\) \(m\in\phi.\)