tìm 1 số tự nhiên có 4 chữ số mà chữ số tận cùng của số đó là 7, biết rằng nếu chuyển chữ số 7 này của số đó lên đầu thì được số mới hơn số cũ 2277 đơn vị.
các bạn giải giúp mình nhé, cảm ơn các bạn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là
Theo đề bài ta có
665 = (Bớt cả hai vế đi 14 + 21 và )
Vậy số cần tìm là 357.
1. Gọi số cần tìm là \(\overline{ab}5\), số sau khi chuyển là \(5\overline{ab}\), ta có :
5ab
- ab5
288
*b - 5 = 8 => b = 13 (viết 3 nhớ 1)
*a - b = a - 3 = 8 => a = 12 (viết 2 nhớ 1)
Vậy số cần tìm là 235.
bạn lên [onlinemath] đi sẽ có nhiều người giỏi giải giúp bạn nhé
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)