K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

\(2016-4032:m-4032:2015\)

24 tháng 8 2019

Có \(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)

\(\Rightarrow|x+y|\ge2\)

Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

Xét x = y = 1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)

\(M=\frac{3}{4}\)

Xét x = y = -1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)

\(M=\frac{7}{4}+3^{2017}\)

Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)

24 tháng 8 2019

Có |x+y| lớn hơn hoặc bằng 

|x|+|y| dấu bằng sảy ra <=>

xy lớn hơn hoặc bằng 0

mà xy=1 => |x+y|=|x|+|y| (1)

Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0

=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)

Từ (1) và (2)

=>|x+y| lớn hơn hoặc bằng 2

=>MIN |x+y|=2

Dấu bằng sảy ra 

<=>|x+y|=2

Hay |x|+|y|=\(2\sqrt{xy}\)

=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)

Mà |x+y|=2

TH1: x+y=2=>x=y=1

Thay vào M ta tính được M=3/4

TH2:x+y=-2 =>  x=y=-1

Thay vào M ta được

M=3/4

Vậy: M=3/4

12 tháng 4 2018

\(A=\left|2014-x\right|+\left|2015-x\right|+2016-x\)
Ta xét 4 trường hợp xảy ra:

TH1: \(x< 2014\)

\(A=2014-x+2015-x+2016-x\)

\(=6045-3x>3\) ( Vì \(x< 2014\) ) (1)

TH2: \(2014\le x\le2015\)

\(A=x-2014+2015-x+2016-x\)

\(=2017-x>2\) ( Vì \(x< 2015\) ) (2)

TH3: \(2015\le x< 2016\)

\(A=x-2014+x-2015+2016-x\)

\(=x-2013\ge2\) ( Vì \(x\ge2015\) ) (3)

TH4: \(x< 2016\)

\(A=x-2014+x-2015+x-2016\)

\(=3x-6045>3\) ( Vì \(x>2016\) ) (4)

Từ (1), (2), (3) và (4) \(\Rightarrow A\ge2\)

Vậy A nhỏ nhất =2 khi x=2015.

24 tháng 1 2017

Đặt bẫy hả