\(\frac{2016-4032:\left(m-2015\right)}{2014x2015x2016}\)
Tìm m sao cho giá trị của biểu thức là nhỏ nhất ..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
Có \(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)
\(\Rightarrow|x+y|\ge2\)
Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)
Xét x = y = 1 ta được:
\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)
\(M=\frac{3}{4}\)
Xét x = y = -1 ta được:
\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)
\(M=\frac{7}{4}+3^{2017}\)
Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)
Có |x+y| lớn hơn hoặc bằng
|x|+|y| dấu bằng sảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 => |x+y|=|x|+|y| (1)
Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0
=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)
Từ (1) và (2)
=>|x+y| lớn hơn hoặc bằng 2
=>MIN |x+y|=2
Dấu bằng sảy ra
<=>|x+y|=2
Hay |x|+|y|=\(2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)
Mà |x+y|=2
TH1: x+y=2=>x=y=1
Thay vào M ta tính được M=3/4
TH2:x+y=-2 => x=y=-1
Thay vào M ta được
M=3/4
Vậy: M=3/4
\(A=\left|2014-x\right|+\left|2015-x\right|+2016-x\)
Ta xét 4 trường hợp xảy ra:
TH1: \(x< 2014\)
\(A=2014-x+2015-x+2016-x\)
\(=6045-3x>3\) ( Vì \(x< 2014\) ) (1)
TH2: \(2014\le x\le2015\)
\(A=x-2014+2015-x+2016-x\)
\(=2017-x>2\) ( Vì \(x< 2015\) ) (2)
TH3: \(2015\le x< 2016\)
\(A=x-2014+x-2015+2016-x\)
\(=x-2013\ge2\) ( Vì \(x\ge2015\) ) (3)
TH4: \(x< 2016\)
\(A=x-2014+x-2015+x-2016\)
\(=3x-6045>3\) ( Vì \(x>2016\) ) (4)
Từ (1), (2), (3) và (4) \(\Rightarrow A\ge2\)
Vậy A nhỏ nhất =2 khi x=2015.
\(2016-4032:m-4032:2015\)