a/cho tỉ lệ \(\frac{3a-b}{a+b}=\frac{3}{4}\) tính giá trị của \(\frac{a}{b}\)
b/ cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) .Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
c/ tìm số nguyên x,y biết :\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
a) Ta có: \(\frac{3a-b}{a+b}=\frac{3}{4}\Rightarrow\) 12a - 4b = 3a + 3b
\(\Rightarrow\) 9a = 7b
\(\Rightarrow\) \(\frac{a}{b}=\frac{7}{9}\)
b) Bạn tự làm nha, áp dụng tính chất của dãy tỉ số bằng nhau
c) Ta có: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\) \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\) \(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow\) \(\frac{x}{5}=\frac{8}{1-2y}\)
\(\Rightarrow\) \(x=\frac{40}{1-2y}\)
Để x nguyên thì 40/1-2y phải nguyên
\(\Rightarrow\) 1-2y \(\in\) Ư(40)
Mà 1-2y là lẻ nên 1-2y \(\in\) {-5;-1;1;5}
\(\Rightarrow\) y \(\in\) {3;1;0;-2}
Nếu y = 3 thì x = -8
y = 1 thì x = -40
y = 0 thì x = 40
y = -2 thì x = 8
Vậy có 4 cặp x,y thỏa mãn