K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông tại...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
12 tháng 2 2016

moi hok lop 6

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BDb) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BDBÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘBÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG...
Đọc tiếp

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BD

b) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BD



BÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘ


BÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNH



BÀI 4: CHO TAM GIÁC ABC VUÔNG TẠI A ( AC > AB), ĐƯỜNG CAO AH. TRÊN TIA HC LẤY HD = HA, ĐƯỜNG VUÔNG GÓC VỚI BC TẠI D CẮT AC TẠI E.

a) CHỨNG MINH AE = AB

b) GỌI M LÀ TRUNG ĐIỂM BE . TÍNH GÓC AHM


BÀI 5: TỨ GIÁC ABCD CÓ CÓ GÓC A = GÓC B =90 ĐỘ VÀ AC = BD.

a) ABCD CÓ PHẢI LÀ HÌNH CHỮ NHẬT KHÔNG? C/M

b) LẤY ĐIỂM M NẰM GIỮA A,C. VẼ MK VUÔNG GÓC AB TẠI K , MH VUÔNG GÓC AD TẠI H. CHỨNG MINH HK // BD

C) TIA MH CẮT BC Ở E, TIA KM CẮT CD TẠI F. MD CẮT HF Ở I, MB CẮT KE TẠI J/ CHỨNG MINH HK + EF = 2IJ

1
12 tháng 10 2016

ai lam thi lam di 

22 tháng 12 2021

em thi

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

22 tháng 8 2016

a. Xét : \(\Delta ABE,\Delta ACI\)

Có: \(\widehat{BAE}=\widehat{CAI}=90^o\)

\(AB=AC\left(gt\right)\)

Ta có: \(\widehat{ABC}=\widehat{ACI}\) (cùng phụ I)

\(\Rightarrow\Delta ABE=\Delta AIC\left(g.c.g\right)\Rightarrow\begin{cases}CI=BE\\AE=AI\end{cases}\)

b. Lại có: \(AE=AD\left(gt\right)\Rightarrow AI=AD\)

Hình thang IDMC có : AD = AI, AN//DM//CI nên MN = NC

 

a: XétΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Xét ΔBME vuông tại E và ΔBCA vuông tại A có 

BE=BA

\(\widehat{MBE}\) chung

Do đó: ΔBME=ΔBCA

Suy ra: \(\widehat{BME}=\widehat{BCA}\) và ME=CA