Cho tam giác ABC có BM=MC,AN=3*NA.Diện tích tam giác AEN=27cm vuông .Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối EC ; NB ta có:\(S\left(EBM\right)=S\left(EMC\right);S\left(NBM\right)=S\left(NMC\right)\)
\(\Rightarrow S\left(NBE\right)=S\left(NEC\right)\)
Mặt khác : \(S\left(NCE\right)=S\left(NEA\right).3=81\left(cm^2\right)\)
\(S\left(ABN\right)=81-26=54\left(cm^2\right)\)
Khi đs : \(S\left(ABN\right)=\frac{1}{4}.S\left(SBC\right)\Rightarrow S\left(ABC\right)=54:\frac{1}{4}=216\left(cm^2\right)\)
Xét hai tam giác EAN và ENC ta thấy chúng có chung đường cao từ E xuống AC và CN=3AN =>S(CNE)=3S(ENA).
Lại có S(EBM)=S(EMC) Do có chung đường có hạ từ E xuống BC và BM=CM
tương tự có :S(NBm) =S (M NC) =>S (BNE) =S(NEC) = 27 x3 = 81 => S(BAN) = 81-27 = 54
Để ý thấy: S(BNC) = 3 S( BNA) Vì có chung đường cao Kẻ tu B va CN = 3 NA =.S(ABC)=S(ABN) x4 = 54 x4 =216
từ E kẻ EH vuông góc với BC(H thuộc BC)
ta có diện tích tam giác EBM=\(\frac{BM.EH}{2}\),diện tích tam giác EMC=\(\frac{MC.EH}{2}\)
mà BM=MC=>diện tích tam giác EBM=EMC