Cho \(\widehat{aOb}\)\(=120^o\).Vẽ tia \(Oc\) trong góc đó sao cho \(\widehat{aOc}\)\(=50^o\).Vẽ tia phân giác \(Om\)của \(\widehat{bOc}\).Tính :
a)Tính \(\widehat{bOm}\)
b)Tính \(\widehat{aOm}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự zẽ hình nha
ta có\(\widehat{bOc}=\widehat{bOa}-\widehat{cOa}\)
=>\(\widehat{bOc}=120^0-100^0=20^0\)
b)\(tacó\hept{\begin{cases}\widehat{bOm}=\widehat{bOa}-\widehat{mOa}=120^0-110^0=10^0\\\widehat{mOc}=\widehat{mOa}-\widehat{cOa}=120^0-110^0=10^0\end{cases}}\)
=>\(\widehat{bOm}=\widehat{mOc}\left(1\right)\)
ta lại có \(\widehat{bOa}>\widehat{mOc}>\widehat{cOa}\)
=>\(mO\)nằm giữa 2 tia \(Ob\)zà \(Oc\left(2\right)\)
từ 1 zà 2 suy ra
mO là tia phân giác của góc \(bOc\)
mik nhớ là. hai góc kề bù thì thường là 180 độ, s lại là 160 đọ nhỉ, sai đề
ta co AOB+BOC=160(1)
Va AOB-BOC=100(2)
Cong (1) va (2) ta co
(AOB+BOC)+(AOB-BOC)=160+100
2AOB=260
AOB=130
Lai co AOB+BOC=160
Hay 130+BOC=160
BOC=30
a, Trong ba tia OA, OM, ON tia OM nằm giữa hai tia OA và ON
b, Ta có \(\widehat{AOB}=\widehat{AOM}+\widehat{MON}+\widehat{BON}\)
\(=40^o+30^o+50^o\)
\(=120^o\)
Nhớ k cho mình nhé
ta có: AOB+BOC=160O
→AOB+(AOC+1000)= 160O+1000=2600
HAY 2AOB=2600
→AOB=1300
BOC=300
B, vi tia OD thuoc goc AOB →OB nam giua OC VA OD
vi BOC=300 MA DOC= 900
→OB ko phai la tia phan giac cua BOC
c,
hình tự kẻ nghen:3333
a) ta có AOB+BOC=160 độ
=> 7BOC+BOC= 160 độ
=> 8 BOC=160 độ
=> BOC= 20 độ
=> AOB= 20*7=140 độ
b) ta có DOC=DOB+BOC
=> DOB=DOC-BOC
=> DOB=90-20=70 độ
vì AOB=AOD+DOB
=>AOD=140-70=70 độ
=> AOD=DOB=70 độ
=> OD là tia p/g của AOB
c) vì OM là tia đối của OC=> MOC= 180 độ
=> MOA+AOC= 180 độ
=> MOA= 180- 160=20 độ
ta có MOB= MOA+AOB=20+140=160 độ
=> MOB=AOC=160 độ
a) Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOc}< \widehat{aOb}\left(50^0< 120^0\right)\)
nên tia Oc nằm giữa hai tia Oa và Ob
\(\Leftrightarrow\widehat{aOc}+\widehat{bOc}=\widehat{aOb}\)
\(\Leftrightarrow\widehat{bOc}=\widehat{aOb}-\widehat{aOc}=120^0-50^0=70^0\)
Ta có: Om là tia phân giác của \(\widehat{bOc}\)(gt)
nên \(\widehat{bOm}=\dfrac{\widehat{bOc}}{2}=\dfrac{70^0}{2}\)
hay \(\widehat{bOm}=35^0\)
Vậy: \(\widehat{bOm}=35^0\)