K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Theo đề ta có

28/63<a/b<30/63==>a/b=29/63

=>63a=29b=>63a-29b=0

Lại có 5a-2b=3

=>a=87/19

b=189/19

a/b=29/63

13 tháng 5 2016

Ta có: 5a-2b=3

=> 5a=3+2b

=> \(a=\frac{3+2b}{5}\)

=> \(\frac{a}{b}=\frac{\frac{3+2b}{5}}{b}=\frac{3+2b}{5}\times\frac{1}{b}=\frac{3+2b}{5b}\)

\(\frac{4}{9}<\frac{3+2b}{5b}<\frac{10}{21}\)

\(<=>\frac{140b}{315b}<\frac{63\times\left(3+2b\right)}{315b}<\frac{150b}{315b}\)

\(<=>140b<189+126b<150b\)

\(<=>b=8;9;10;11;12;13\)

<=> b=Thử vào 5a-2b=3 để tìm a nguyên thì b=11 duy nhất thỏa mãn.

Vậy phân số cần tìm là \(\frac{5}{11}\)

13 tháng 5 2016

Ta có: abc = 999-a = 99-b = 9-c

Từ đó, suy ra:
999-a = 99-b = 9-c

Liệu điều này có thỏa mãn không, thưa là không vì 9-c>0 thì c<9

Vậy 99-b>0 thì b<99 và c<999

13 tháng 5 2016

ta có abc=999-a=99-b=9-c

=>999-a=99-b=9-c

điều này có thõa này có thõa mãn không,khôngvì 9-c>0 thì c<9

vậy 99-b>0 thì b<99 và c<999

lộn đề rầu mấy bà 

mầy học dốt quá bài vậy mà giải ko ra 124 215 365 289 214 278 235 698 789 đáp án đấy ngu

22 tháng 8 2016

xích mích à

22 tháng 8 2016

tự làm đi đừng ai giúp nhé lần này lại gặp mi nữa rồi

AH
Akai Haruma
Giáo viên
29 tháng 3 2023

Lời giải:
Áp dụng BĐT AM-GM:
$P\leq \frac{ab}{2\sqrt{a^2b^2}}=\frac{ab}{2ab}=\frac{1}{2}$

Dấu "=" xảy ra khi $a=b$ (thay vào điều kiện $2b\leq ab+4\Leftrightarrow a^2+4\geq 2a$- cũng luôn đúng)

NV
16 tháng 4 2022

\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)

\(\Rightarrow a+b^2⋮ab-1\)

Do đó, vai trò của a và b là hoàn toàn như nhau.

TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)

\(\Rightarrow a=2\Rightarrow a=b=2\)

TH2: \(b>a\Rightarrow b\ge a+1\)

Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))

\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)

TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)

- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)

- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)

\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên

TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\) 

TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)

\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)

Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)