tìm a để a+16 ; a-73 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(P>1\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}>1\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow a>4\)
Vậy \(a>4,a\ne16\)
3: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow a>4\)
Lời giải:
$x^3+3x^2-5x+a=x^2(x-1)+4x(x-1)-(x-1)+(a-1)=(x-1)(x^2+4x-1)+(a-1)$
Vậy $x^3+3x^2-5x+a$ chia $x-1$ dư $a-1$. Để đây là phép chia hết thì $a-1=0$
$\Leftrightarrow a=1$
Đáp án B.
Đặt a+16=c2
a-73=d2
=>(a+16)-(a-73)=c2-d2
=>(c+d)(c-d)= 89
Do 89 là số nguyên tố
=>c+d=89,c-d=1=>c=45,d=44
hoặc c+d=1, c-d=89=>c=45,d=-44