K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

\(\Rightarrow x\left(2y+1\right)-3\left(2y+1\right)=7\)

\(\Leftrightarrow\left(x-3\right)\left(2y+1\right)=7=1.7=7.1=-1.-7=-7.-1\)

x-3-7 -117
2y+1-1 -7 71
x-42410
y-1-430

vậy....

25 tháng 2 2018

cảm ơn bạn Nguyễn Xuân Anh rất nhiều

8 tháng 10 2016

đáp án: 10989nha

9 tháng 10 2016

Cảm ơn bạn nhiều,nhưng bạn có thể giải giúp mình được không?

a: Tỉ số là 3/2

b: Tỉ số phần trăm là;

40/(30+40+20+20+5)=34,78%

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Bài 3: Số $0$

Bài 4: Số $103$

Bài 5: Số $106$

Bài 6: Dư $60$

 

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Bài 7: Số $149$
Bài 8: Số $58$

Bài 9: Số $598$

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Bài 4:

a) Vì $ABC$ cân tại $A$ nên $AB=AC$ và $\widehat{ABC}=\widehat{ACB}$

$\Rightarrow 180^0-\widehat{ABC}=180^0-\widehat{ACB}$

hay $\widehat{ABQ}=\widehat{ACR}$

Xét tam giác $ABQ$ và $ACR$ có:

$AB=AC$ (cmt)

$\widehat{ABQ}=\widehat{ACR}$ (cmt)

$BQ=CR$ (gt)

$\Rightarrow \triangle ABQ=\triangle ACR$ (c.g.c)

$\Rightarrow AQ=AR$

b) 

$H$ là trung điểm của $BC$ nên $HB=HC$

Mà $QB=CR nên $HB+QB=HC+CR$ hay $QH=HR$

Xét tam giác $AQH$ và $ARH$ có:

$AQ=AR$ (cmt)

$QH=RH$ (cmt)

$AH$ chung

$\Rightarrow \triangle AQH=\triangle ARH$ (c.c.c)

$\Rightarrow \widehat{QAH}=\widehat{RAH}$

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Hình bài 4:

undefined