Tính tổng : S= 1/3.7+1/7.11+....+1/19.23
Ai làm đúng và nhanh nhất mk like cho :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{103.107}\)
\(A=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{103.107}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{107}\right)\)
\(A=\frac{1}{4}.\frac{104}{321}\)
\(A=\frac{26}{321}\)
_Chúc bạn học tốt_
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\)
\(A=\frac{1}{3}-\frac{1}{107}=\frac{104}{321}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\dfrac{8}{27}\)
\(=\dfrac{11}{54}\)
Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx
Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\) mà \(2^{-1}< 2^{51}\) là điều quá rõ rồi
Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx
Chúc bn học tốt
S=1/3.7+1/7.11+...+1/19.23 (1)
Nhân cả 2 vế của đẳng thức (1) với 4 ta được:
4S=4/3.7+4/7.11+...+4/19.23
4S=1/3.7+1/7.11+...+1/19.23
4S=1/3-1/7+1/7-1/11+..+1/19-1/23
4S=1/3-1/23
4S=20/69
S =20/69:4
S =5/69
Mọi người ủng hộ mik nha
\(S=\frac{1.4}{3.7.4}+\frac{1.4}{7.11.4}+......+\frac{1.4}{19.23.4}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+......+\frac{4}{19.23}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\frac{17}{60}=\frac{17}{240}\)