K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

                  TH1 : Trong cac so tren co 1 so ai chia hết cho 10 ( i = 1;2;3;...;9) 

                                SUY RA trong 10 số bất kì có 1 số chia hết cho 10        ( 1)

                         TH2 : Trong các số trên ko có số nào chia hết cho 10 .Khi đó các số dư khi chia cho 10 là 1;2;3;...;9 ( 9 chữ số ),với 10 số chia cho 10 nên ít nhất sẽ có 2 số chia cho 10 có cùng số dư ( theo nguyen li dirich le)

                            Suy ra hiệu của 2 số đó sẽ chia hết cho 10           (2)

                           Từ 1 và 2 suy ra thế nào cũng sẽ có 1 số bất kì hoac hiệu một số các số liên tiếp nhau trong dãy trên chia hết cho 10(DPCM)

                                  

24 tháng 3 2015

 Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

 

24 tháng 3 2015

Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

20 tháng 12 2015

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

Tick nha

20 tháng 12 2015

tick nhé:http://olm.vn/hoi-dap/question/61032.html

17 tháng 2 2016

nhấn vào nhé Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10 sẽ có đáp án đó

duyệt đi

17 tháng 2 2016

  Cần phải chứng minh

13 tháng 10 2016

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

13 tháng 10 2016

Bạn thật tài giỏi

29 tháng 1 2017

đặt S1=a1;S2=a1+a2;S3=a1+a2+a3;...;S10=a1+a2+a10

xét 10 số S1;...S10.ta có 2 TH

+>nếu có 1 số Sk có tận cùng =0 (sk=a1+a2+a3+...+ak,k từ 1 đến 10) => tổng của k số a1;a2;...ak chia hết cho 10

+> nếu ko có số nào trong 10 số S1,S2,...,S10 tận cùng là 0 => phải có ít nhất 2 số có tận cùng gioong nhau

. ta gọi 2 số đó là sm và sn (1\(\le\)m<n\(\le\)10)

...Sm=a1+a2+...+a(m)

...Sn=a1+a2+...+a(m)+a(m+1)+a(m+2)+...+a(n)

=> Sn-Sm=a(m+1)+a(m+2)+...+a(n) tận cùng là 0

=> tổng của n-m số a(m+1),...,a(n) chia hêt cho 10

Bg: Đặt S1 = a1; S2 = a1+ a2; S3 = a1+a2+a3 ... ;S10 = a1+a2+...+a10. Xét 10 số S1,S2, ... S10 ta có 2 trường hợp như sau : 

+) Nếu có 1 số Gk nào đó tận cg = 0 ( Sk = a1+a2 + ... ak, k từ 1 - 10) => tổng của k số a1,a2, ... ak chia hết cho 10 ( đpcm ) 

+) Nếu k có số nào trong 10 số S1, S2, ... S10 tận cg là 0 => chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cg giống nhau. Ta gọi 2 số đó là : Sm và Mn (1= <m<n=< 10 ) .... Sm = a1+a2 + ... a(m); Mn = a1+a2+ ...a(m)+ a(m1)+ a(m2) + ... + a(n ) .

=> Sn - Sm = a(m+1)+ a(m+2) + ....+ a(n) tận cg là 0 => Tổng của n-m số a( m+1),a(m+2), ..., a(n) chia hết cho 10 ( đpcm ) .

Đặt S1 = a1 ; S2 = a1 + a2 ; S3 = a1 + a2 + a3 ; ... ; S10 = a1 + a2 + a3 + ... + a10

Xét 10 số S1 ; S2 ; S3 ; ... ; S10 ta có 2 trường hợp :

+) Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak, k từ 1 đến 10) ⇒ tổng của k số a1, a2 , ..., ak chia hết cho 10 (đpcm)

+) Nếu không có số nào trong số S1 ; S2 ; S3 ; ... ; S10 tận cùng bằng 0 ⇒ chắc chắn phải có ít nhất 2 số nào đó tận cùng giống nhau. Ta gọi 2 số đó là Sm và Sn (1 ≤ m < n>

Sm = a1 + a2 + a3 + ... + a(m)

Sn = a1 + a2 + a3 + ... +a(m) + a(m+1) + a(m+2) + ... + a(n)

⇒ Sn - Sm = a(m+1) + a(m+2) + ... +a(n) tận cùng bằng 0

⇒ Tổng của n - m số a(m+1) ; a(m+2) ; ... a(n) chia hết cho 10 (đpcm)

Vậy trong 10 số tự nhiên bất kì tồn tại 1 số hoặc tổng 1 số liên tiếp nhau trong dãy chia hết cho 10

29 tháng 3 2021

Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10

Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:

(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)

⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10

(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00

⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)

Sm=a1+a2+...+amSm=a1+a2+...+am

Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an

⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0

⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10

Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)