giá trị của x=? de bieu thuc x^2-4x+12 dat gia tri nho nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
Ta có: |x-1| + |x-2| = |x-1| + |2-x|
Mà |x-1| + |x-2| \(\ge\) |x-1+x-2| hay |x-1| + |2-x| \(\ge\) |x-1+2-x|
\(\Rightarrow\) |x-1| + |2-x| \(\ge\) 1
Vậy A có GTNN là 1 khi x \(\in\) {1;2}
\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),dấu "=" xảy ra \(\Leftrightarrow ab\ge0\),ta có:
\(A\ge\left|\left(x-1\right)+\left(2-x\right)\right|=\left|x-1+2-x\right|=\left|1\right|=1\)
\(\Rightarrow A_{min}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x+2+1-x\right|=\left|3\right|=3\)
Dấu " = " khi \(\left\{\begin{matrix}x+2\ge0\\1-x\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x\ge-2\\x\le1\end{matrix}\right.\Rightarrow-2\le x\le1\)
\(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)
Vậy \(MIN_A=3\) khi \(x\in\left\{-2;-1;0;1\right\}\)
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Ta có:
\(x^2-4x+12=\left(x^2-4x+4\right)+8=\left(x-2\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=2.
\(x^2-4x+12=x^2-2x-2x+4+8=x\left(x-2\right)-2\left(x-2\right)+8=\left(x-2\right)\left(x-2\right)+8=\left(x-2\right)^2+8\)Vì \(\left(x-2\right)^2\ge0\) với mọi x
=>\(\left(x-2\right)^2+8\ge8\) với mọi x
=>GTNN của \(\left(x-2\right)^2+8=8\)
Dấu "=" xảy ra <=> x-2=0 <=>x=2
Vậy x=2 thì x2-4x+12 đạt GTNN