Giải bất phương trình
(3)/(x-2) > hoặc =(5)/(2x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>4x^2-24x+36-4x^2+4x-1<10
=>-20x<10-35=-25
=>x>=5/4
b: =>x(x^2-25)-x^3-8<=3
=>x^3-25x-x^3-8<=3
=>-25x<=11
=>x>=-11/25
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2< 10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-10< 0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-10< 0\)
\(\Leftrightarrow-20x< -25\)
\(\Leftrightarrow x>\dfrac{5}{4}\)
\(b,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)\le3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)\le3\)
\(\Leftrightarrow x^3-25x-\left(x^3+8\right)\le3\)
\(\Leftrightarrow x^3-25x-x^3-8-3\le0\)
\(\Leftrightarrow-25x\le11\)
\(\Leftrightarrow x\ge-\dfrac{11}{25}\)
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2
=> 5x=4(x+2)
=>5x-4x=8
=>x=8(tmđk)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)
ĐKXĐ: x ≠ 2; \(x\ne\dfrac{1}{2}\)
\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)
\(\Leftrightarrow\dfrac{3}{x-2}-\dfrac{5}{2x-1}\ge0\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{\left(x-2\right)\left(2x-1\right)}\ge0\)
\(\Leftrightarrow\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}\ge0\)
*Với: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}=0\)
=> x + 7 = 0
<=> x =-7
*Với \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) (1)
Ta lâpj bảng xét dấu:
x |
| -7 |
| 1/2 |
| 2 |
|
X + 7 | - | 0 | + | | | + | | | + |
2x – 1 | - | | | - | 0 | + | | | + |
X - 2 | - | | | - | | | - | 0 | + |
BĐT (1) | - | 0 | + | || | - | || | + |
Từ bảng trên ta có thể thấy: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) khi -7 < x < 1/2 hoăcj x > 2
Vayj:.............
\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}.\\ \Leftrightarrow\dfrac{3}{x-2}-\dfrac{5}{2x-1}\ge0.\\ \Leftrightarrow\dfrac{6x-3-5x+10}{\left(x-2\right)\left(2x-1\right)}\ge0.\\ \Leftrightarrow\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}\ge0.\)
Ta có:
\(x+7=0.\Leftrightarrow x=-7.\\ x-2=0.\Leftrightarrow x=2.\\ 2x-1=0.\Leftrightarrow x=\dfrac{1}{2}.\)
Đặt \(f\left(x\right)=\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}.\)
Bảng xét dấu:
\(x\) \(-\infty\) \(-7\) \(\dfrac{1}{2}\) \(2\) \(+\infty\)
\(x+7\) - 0 + | + | +
\(x-2\) - | - | - 0 +
\(2x-1\) - | - 0 + | +
\(f\left(x\right)\) - 0 + || - || +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in[-7;\dfrac{1}{2})\cup\left(2;+\infty\right).\)