giúp mình câu cuối
cho hình bình hành ABCD(AB>BC). Trên cạch AB lấy điểm E đg thẳng DE cắt cạnh CB kéo dai tại N và cắt AC tại M
a) Δ AED ∼ΔBEN
b) MA.MD=ME.MC
c) c/m:
\(\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
2: Xét ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc BEF
=>ΔEAD đồng dạng với ΔEBF
Xét tam giác ABC có ED // BC ; DE = 1/2BC
=> DE là đường trung bình của tam giác ABC (tc đường tb)
a) Xét \(\Delta AED\) và \(\Delta BEN\)
Ta có : \(\widehat{AED}=\widehat{BEN}\) ( đối đỉnh )
\(\widehat{ADE}=\widehat{BNE}\) ( Do \(\text{AD//BC}\) )
\(\Rightarrow\Delta AED\sim\Delta BEN\)
b) Ta có : \(\text{AE//DC}\) ( Do \(ABCD\) là hình bình hành )
\(\Rightarrow\dfrac{AM}{MC}=\dfrac{EM}{MD}\) ( theo định lí Ta-lét )
\(\Rightarrow MA.DM=MC.ME\)
c) Ta có :
\(\text{AE//DC}\)\(\Rightarrow\dfrac{DM}{DC}=\dfrac{CM}{AC}\)( theo định lí Ta-lét )
\(\text{AD//BC}\) \(\Rightarrow\dfrac{AM}{AC}=\dfrac{DM}{DN}\)( theo định lí Ta-lét )
\(\Rightarrow\dfrac{DM}{DE}+\dfrac{DM}{DN}=\dfrac{CM}{AC}+\dfrac{AM}{AC}=1\)
\(\Rightarrow\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)