- tìm số nguyên n biết :
- a)2*16>2n>4
- b)9*27<3n<243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách tui đúng nhất thề luôn
a)2n*16=128
=>2n=128:16
=>2n=8
=>n=4
b)3n*9=27
=>3n=27:9
=>3n=3
=>n=1
c)(2n+1)3=27
=>(2n+1)3=33
=>2n+1=3
=>2n=2
=>n=1
a) 2n.16 = 128
32n = 128
n = 128 : 32
n = 4
Vậy n = 4
b) 3n.9=27
27n = 27
n = 27:27
n = 1
Vậy n = 1
c) (2n + 1)3 = 27
(2n + 1)3 = 33
=> 2n + 1 = 3
=> 2n = 3 - 1 = 2
=> n = 2 : 2 = 1
Vậy n = 1
b) Để M là số nguyên thì \(2n-7⋮n-5\)
\(\Leftrightarrow2n-10+3⋮n-5\)
mà \(2n-10⋮n-5\)
nên \(3⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(3\right)\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Vậy: \(n\in\left\{6;4;8;2\right\}\)
a) Ta có: \(\left|x-3\right|=2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{1}{3}\)
a, \(\frac{1}{3}n=\frac{1}{9}\Rightarrow n=\frac{1}{9}:\frac{1}{3}\Rightarrow n=\frac{1}{9}.3=\frac{1}{3}\)
vậy n=1/3
b, \(\Rightarrow4n.16-2n=0\Rightarrow n.\left(4.16-2\right)=0\Rightarrow62n=0\Rightarrow n=0\)
vậy n=0
c,
a, 1/3n = (1/3)^2
=> n = 1/3
b, 2n = 4n.4^2
=> 2n = 4^3n
=> 2n=2^6n
=> n=2^5n
=> n=0
c) 3n + 2/9 = 3^9
n=177145/27
=>
3n=27<=>n=27:3=9(TM)
2n=625<=>n=625:2=32,5(KTM VÌ n LÀ SỐ TỰ NHIÊN)
12n=144<=>n=144:12=12(TM)
2n.16=128<=>n=128;16:2=4(TM)
5n:29=27<=>n=27X29:5=156,6((KTM VÌ n LÀ SỐ TỰ NHIÊN)
(2n+1)=27<=>2n=27-1<=>2n=26<=>n=26:2=13
bạn tự kết luân nha
TM:thỏa mãn
KTM không thỏa mãn
ủng hộ mk nha mk bị âm điểm
a. 2×2^4 > 2^n > 2^2
<=> 2^5 > 2^4, 2^3 > 2^2
Vậy n={3,4}
b. Không tồn tại n
a) 2*16=32>2^n>4
2^n={2^2;2^4}
n={2;4}
b)9*27=243<3^n<243
0 tồn tại n