Cho hình chữ nhật ABCD có AB=4cm, AD=3cm. Vẽ đường cao AH của tam giác ADB
a) Chứng minh tam giác AHB ~ tam giác BCD
b) Chứng minh AD^2=DH.DB
c) Tính độ dài đoạn thằng DH, AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác AHB và tam giác BCD, có:
\(\widehat{AHB}=\widehat{BCD}=90^0\)
\(\widehat{ABH}=\widehat{CDB}\) ( cùng phụ với \(\widehat{B}\) )
Vậy tam giác AHB đồng dạng tam giác BCD ( g.g )
b.Xét tam giác AHD và tam giác ABD, có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{D}:chung\)
Vậy tam giác AHD đồng dạng tam giác ABD ( g.g )
\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\)
\(\Leftrightarrow AD^2=BD.DH\)
c. Áp dụng định lý pitago vào tam giác vuông ABD, có:
\(BD^2=AD^2+AB^2\)
\(\Rightarrow BD=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)
Ta có:\(AD^2=BD.DH\) ( cmt )
\(\Leftrightarrow3^2=5DH\)
\(\Leftrightarrow9=5DH\)
\(\Rightarrow DH=1,8cm\)
Áp dụng dịnh lý pitago vào tam giác vuông AHD, có:
\(AD^2=AH^2+DH^2\)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{3^2-1,8^2}=\sqrt{5,76}=2,4cm\)
a, Xét tam giác AHB và tam giác BCD có
^AHB = ^BCD = 900
^ABH = ^BDC ( soletrong )
Vậy tam giác AHB ~ tam giác BCD (g.g)
b, Xét tam giác AHD và yam giác BAD có
^AHD = ^BAD = 900
^D _ chung
Vậy tam giác AHD ~ tam giác BAD (g.g)
\(\dfrac{AD}{BD}=\dfrac{HD}{AD}\Rightarrow AD^2=HD.BD\)
c, Theo định lí Pytago tam giác DAB vuông tại A
\(BD=\sqrt{AB^2+AD^2}=5cm\)
Lại có \(\dfrac{AH}{AB}=\dfrac{AD}{BD}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}cm\)
\(HD=\dfrac{AD^2}{BD}=\dfrac{9}{5}cm\)
a, Xét tam giác AHB và tam giác BCD ta có :
^AHB = ^BCD = 900
^BDC = ^ABH ( so le trong )
Vậy tam giác AHB ~ tam giác BCD ( c.g.c )
b, Xét tam giác ADB và tam giác HAD
^A = ^H = 900
^D _ chung
Vậy tam giác ADB ~ tam giác HAD ( g.g )
⇒ADAH=BDAD⇒ADAH=BDAD( tỉ số đồng dạng ) ⇒AD2=BD.DH
c) -Ta có: AD2= DH.DB(cmt)
=> DH= AD2:DB
DH=3^2:5=9:5=1,8
- Xét tam giác BDC vuông tại C có:
DB^2 = BC^2+CD^2
DB^2=3^2+4^2=25
=> BD=5cm
Ta có: tam giác AHB ~ tam giác BCD(CM câu a)
=> AH/BC=AB/BD
=> AH=AB.BC:BD
<=> AH=3.4:5=2,4cm
d) Ta có diện tích tam giác AHB= 1/2 AB.AH=1/2x2,4x4=4.8
Ta có diện tích tam giác BCD= 1/2 BC.DC=1/2x3x4=6
S ABH/ S BCD= 4,8/6=4/5
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{BAH}=\widehat{DBC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADB vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
c: BD=10(cm)
=>DH=3,6cm
=>BH=6,4(cm)
=>AH=4,8cm
sửa đề là đồng dạng bạn nhé
a, Xét tam giác AHB và tam giác BCD có :
^AHB = ^BCD = 900 ; ^ABH = ^BDC ( soletrong )
Vậy tam giác AHB ~ tam giác BCD ( g.g )
b, Xét tam giác ADH và tam giác DBC có :
^ADH = ^DBC ( soletrong) ; ^AHD = ^BCD = 900
Vậy tam giác ADH ~ tam giác DBC (g.g)
\(\dfrac{DH}{BC}=\dfrac{AD}{DB}\Rightarrow AD.BC=DH.DB=AD^2\)
c, Theo định lí Pytago tam giác ABD vuông tại A
\(BD=\sqrt{AD^2+AB^2}=10cm\)
Ta có : \(DH=\dfrac{AD^2}{DB}=\dfrac{18}{5}cm\)
Lại có : tam giác AHB ~ tam giác BCD ( g.g ) (cmt)
\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow AH=\dfrac{AB.BC}{BD}=\dfrac{24}{5}cm\)
a, Xét ΔHAB và ΔCBD có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)
\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)
b, Xét ΔHDA và ΔADB có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)
\(\Rightarrow AD^2=HD.BD\)
c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)
hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)
\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)
a) Xét hình chữ nhật ABCD có:
AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)
Xét tam giác AHB và tam giác BCD có:
\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{BCD}=90^0\)
=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)
b) Xét tam giác ADH và tam giác BDA có:
\(\widehat{ADB}\) chung
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)
c) Xét tam giác BDC vuông tại C có:
\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Xét tam giác ADH vuông tại H có:
\(AD^2=AH^2+DH^2\)( định lý Pytago)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
a, Xét tam giác AHB và tam giác BCD ta có :
^AHB = ^BCD = 900
AB = CD = 4 cm
^BDC = ^ABH ( so le trong )
Vậy tam giác AHB ~ tam giác BCD ( c.g.c )
b, Xét tam giác ADB và tam giác HAD
^A = ^H = 900
^D _ chung
Vậy tam giác ADB ~ tam giác HAD ( g.g )
\(\Rightarrow\frac{AD}{AH}=\frac{BD}{AD}\)( tỉ số đồng dạng ) \(\Rightarrow AD^2=BD.DH\)
c, Py ta go cho tam giác BAD ta có :
\(BD^2=AD^2+AB^2=9+16=25\Leftrightarrow BD=5\)cm
Lại có : \(AD^2=BD.DH\)hay \(9=5.DH\Rightarrow DH=\frac{9}{5}=1,8\)cm
\(\Rightarrow BH=BD-HD=5-1,8=3,2\)cm
Py ta go cho tam giác \(AB^2=BH^2+AH^2\Leftrightarrow16=3,2^2+AH^2\)
\(\Leftrightarrow AH^2=\sqrt{5,76}\Leftrightarrow AH=...\)tự tính