cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O,R) (AB<BC). Vẽ đường cao AH và đường kính AE. Tia AH cắt đường tròn tại D.
a. Chứng minh DE // BC và BECD là hình thang cân
b. Tính tổng HA^2 + HB^2 + HC^2 + HD^2 theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét tứ giác AEHF có :
AEH = 900 (BE là đường cao của B trên AC )
AFH = 900 (CF là dường cao của C trên AB )
ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau
==> tứ giác AEHF nội tiếp
xét tứ AEDB có :
AEB = 900 (BE là dường cao của B trên AC )
ADB = 900 (AD là đường cao của A trên BD )
mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông
==> tứ giác AEDB nội tiếp
câu b vì mình ko hiểu đường cao của đường tròn là gì :/
a: góc ACM=1/2*sđ cung AM=90 độ
b: góc ADB=góc AEB=90 độ
=>ABDE nội tiếp
a) Xét tứ giác AEHF có
\(\widehat{HEA}+\widehat{HFA}=180^0\)
nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)
nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)