Tìm n thuộc Z, biết:7-3n chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
Ta có: - n2 = n2
n2 + 3n - 7 = n(n + 2) +(n + 2) - 9 chia hết cho n + 2
n(n + 2) + ( n + 2) chia hết cho n + 2
suy ra -9 chia hết cho n+2 => n + 2 thuộc Ư(-9) = Ư(9) = { -1; -3; -9; 1; 3; 9}
Vậy n thuộc { -3; - 5; - 11; -1; 1; 7}
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
3n - 7 ⋮ n - 2 <=> 3(n - 2) - 1 ⋮ n - 2
=> 1 ⋮ n - 2 (vì 3(n - 2) ⋮ n - 2)
=> n - 2 ∈ Ư(1) = {1; -1}
n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
Vậy n ∈ {3; 1}
Ta có:
3n + 7 = 3n + 7
\(\Rightarrow\)( 3n + 7 ) \(⋮\)( 3n + 7 )
\(\Rightarrow\)n \(\in\)Z
Vậy n \(\in\)Z
Để \(n\in Z\) thì \(7-3n\div n\) \(\rightarrow\int^{3n\div n}_{7\div n}\rightarrow n\inƯ\left(7\right)=\left\{+-1;+-7\right\}\)
Ta có bảng sau:
\(\rightarrow x\in\phi\)