thỏa mãn x.1^2+x.2^2=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Bài 1.
Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)
\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)
\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)
\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\) (1)
Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)
\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)
\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)
\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\) (2)
Cộng vế với vế của (1) và (2) ta có:
\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)
\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)
Bài 2:
Ta có: (2a+1)(2b+1)=9
nên \(2b+1=\dfrac{9}{2a+1}\)
\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)
\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)
\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)
Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)
\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)
\(=\dfrac{3+2a+1}{3a+6}\)
\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)
1/ 4(x-1)² = 9(x+2)² ⇔ 2I x-1 I = 3I x+2 I ⇔ 2(x-1) = 3(x+2) hoặc 2(x-1) = -3(x+2)
⇔ 2(x-1) = 3(x+2) hoặc 2(x-1) = -3(x+2)
⇔ 2x - 2 = 3x + 6 hoặc 2x - 2 = -3x - 6
⇔ x = -8 hoặc x = -4/5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2/ x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3/ M = (x-1)(x+5)(x² + 4x + 5) = (x² + 5x - x - 5)(x² + 4x + 5)
= (x² + 4x - 5)(x² + 4x + 5). Đặt x² + 4x = y ⇒ M = (y - 5)(y + 5) = y² - 25
Do y² ≥ 0 nên y² - 25 ≥ -25 ⇒ M ≥ -25. Dấu '=' xảy ra ⇔ y² = 0 ⇔ y = 0
⇒ x² + 4x = y = 0 ⇔ x(x + 4) = 0 ⇔ x = 0 hoặc x = -4
Vậy min(giá trị nhỏ nhât) M = -25, đạt được ⇔ x = 0 hoặc x = -4
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4/ P = -x² - 4x - y² + 2y = -x² - 4x - y² + 2y - 4 - 1 + 5
= (-x² - 4x - 4) + (-y² + 2y - 1) + 5 = -(x + 2)² - (y - 1)² + 5
Do (x + 2)² ≥ 0 và (y - 1)² ≥ 0 nên -(x + 2)² ≤ 0 và - (y - 1)² ≤ 0
⇒ -(x + 2)² - (y - 1)² ≤ 0 ⇒ -(x + 2)² - (y - 1)² + 5 ≤ 5 ⇒ P ≤ 5.
Dấu '=' xảy ra ⇔ (x + 2)² = 0 và (y - 1)² = 0 ⇔ x = -2 và y = 1
Vậy max (giá trị lớn nhất) P = 5, đạt được ⇔ x = -2 và y = 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5/ Do AB = AD và AB = 5cm ⇒ AD = 5 cm, Xét ΔABD vuông tại A, áp dụng định lý Py-ta-go ta tính được BD² = 50 cm. Do AB // CD nên góc ABD = góc BDC
Xét ΔABD và ΔBDC có góc DAB = góc DBC = 90độ , góc ABD = góc BDC (c/m trên) ⇒ ΔABD ~ ΔBDC(g.g) ⇒ AB/BD = BD/CD ⇒ AB.CD = BD² ⇒ CD = BD²/AB = 50/5 = 10cm
Áp dụng công thức tính S ta tính được S(ABCD) = (AB+CD).AD/2 = (5+10).5/2 = 37,5 cm²
\(x+\left(3x+1\right)^2+1=9\left(x^2+1\right)\)
\(\Leftrightarrow x+9x^2+6x+1+1=9x^2+9\)
\(\Leftrightarrow7x=7\Leftrightarrow x=1\)
\(\left(x+1\right)^2+2\left(x+1\right)\left(x+2\right)+\left(x+2\right)^2=9\)
\(\Leftrightarrow\left(x+1+x+2\right)^2=9\)
\(\Leftrightarrow\left(2x+3\right)^2=9\)
\(\Leftrightarrow x=0\) hoặc \(x=-3\)
5/9 - 2/3 = -15/9x + 1 2/9x
-1/9 = (-15/9 + 1 2/9)x
-1/9 = -4/9x
x = -1/9 :-4/9
x = 1/4
vậy x = 1/4
đúng 100% đấy bạn ơi
Đúng là \(\dfrac{x^2}{9}+\dfrac{y^2}{9}=1\) chứ em? Đề thật kì quặc, tại sao ko cho luôn là \(x^2+y^2=9\) cho rồi
Ta có:
\(\left(x+2.y\right)^2\le\left(1+4\right)\left(x^2+y^2\right)=45\)
\(\Rightarrow-3\sqrt{5}\le x+2y\le3\sqrt{5}\)
\(\Rightarrow1-3\sqrt{5}\le x+2y\le1+3\sqrt{5}\)
\(P_{max}=1+3\sqrt{5}\) khi \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{5}};\dfrac{6}{\sqrt{5}}\right)\)
\(P_{min}=1-3\sqrt{5}\) khi \(\left(x;y\right)=\left(-\dfrac{3}{\sqrt{5}};-\dfrac{6}{\sqrt{5}}\right)\)
Nếu đề là:
\(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) \(\Leftrightarrow4x^2+9y^2=36\)
Ta có:
\(\left(x+2y\right)^2=\left(\dfrac{1}{2}.2x+\dfrac{2}{3}.3y\right)^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=25\)
\(\Rightarrow-5\le x+2y\le5\)
\(\Rightarrow-4\le x+2y+1\le6\)
\(P_{max}=6\) khi \(\left(x;y\right)=\left(\dfrac{9}{5};\dfrac{8}{5}\right)\)
\(P_{min}=-4\) khi \(\left(x;y\right)=\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)
1,x+9/x+5=2/7
=>(x+9).7=(x+5).2
=>7x+63=2x+10
=>7x-2x=10-63
=>5x=-53=>x=-53/5
7x=2y<=>x/2=y/7
Áp dụng...
=>x=2;y=7