K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2022

m

DD
6 tháng 3 2021

\(A=2.2^2+3.2^3+...+n.2^n\)

\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)

\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)

\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)

\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)

Từ đây phương trình ban đầu tương đương với: 

\(\left(2n-2\right).2^n=2^{n+34}\)

\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)

\(\Leftrightarrow n-1=2^{33}\)

\(\Leftrightarrow n=2^{33}+1\)

Đề thiếu bạn ạ!

thank

hok tốt

9 tháng 10 2016

 làm ơn tl giùm vs ajk!!