cho tam giác abc có ca=cb=10cm ab=12 cm kẻ CI vuông góc ab I thuộc ab kẻ ih thuộc ac ik vuông góc bc k thuộc bc
a CM IA=IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: CB = CA ( = 10 cm )
=> tam giác ABC cân tại C
Mà CI là đường cao nên CI cũng là đường trung trực
=> IA = IB
a) Xét tam giác ABC có CA = CB nên cân tại C
Do đó CI vừa là đường cao vừa là trung tuyến
=> I là trung điểm AB
=> IA = IB
Vậy IA = IB
b) Ta có:
\(IA=\frac{1}{2}AB=\frac{1}{2}.12=6\left(cm\right)\)
\(\Rightarrow IA^2=6^2=36\left(cm\right)\)
Xét tam giác CIA vuông tại I có:
\(CI^2+IA^2=AC^2\)(Định lý Py-ta-go)
\(\Rightarrow IC^2+36=10^2=100\)
\(IC^2=100-36=64=8^2\)
Mà IC>0 nên IC =8
Vậy IC = 8cm
\(IC^2+\)
Bạn tự vẽ hình nha !
a) \(\Delta\) ABC có CA = CB = 10 cm
=> \(\Delta\) ABC cân tại C có CI là đường cao nên CI cũng là đường trung tuyến ứng với cạnh AB => I là trung điểm của AB hay IA = IB
b) Có IA = IB ( cm câu a) = \(\frac{1}{2}\)AB = \(\frac{1}{2}.12\) = 6 (cm)
Áp dụng Py - ta - go vào \(\Delta\)vuông ACI có:
AC2 = AI2 + CI2
hay 102 = 62 + CI2
=> CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}\) = 8 cm
a)Ta co :CA=CB=10cm
Nen tam giac ABC can tai C
Ma : CI vuong goc voi AB tai i
Nen:CI là đường cao
Do đó CI là đường trung tuyến của tam giác ABC
Vay: AI= BI
DE WA HK LM NUA
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: AB=12cm
nên IA=6cm
=>IC=8cm
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
a) Xét \(\Delta\)AIC vuông tại I và \(\Delta\)BIC vuông tại I
có : CA = CB ( giả thiết)
CI : chung
=> \(\Delta\)AIC =\(\Delta\)BIC ( cạnh huyền - cạnh góc vuông)
=> IA =IB ( cạnh tương ứng)
b)IC không tính dc vì thiếu dữ kiện ( AB =?) hoặc cái gì nữa nhé
c) Đề sai ;IK vuông góc CB nhé
Theo câu a => góc ACI = góc BCI ( góc tương ứng)
Xét \(\Delta\)HCI vuông tại Hvà \(\Delta\)KCI vuông tại K có :
CI chung ; HCI = góc KCI
=> \(\Delta\)HCI =\(\Delta\)BCI ( cạnh huyền - góc nhọn)
=> IH = IK
a)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=\(\sqrt{64}\)=8(cm)
c0 Tam giác ABC cân tại góc A
=>Góc C1=góc C2
Xét hai tam giác vuông CIK và CIA, ta có:
GócC1=góc C2(cmt)
IC: cạnh chung
=>tam giácCIK= tam giác CIH (cạnh huyền_góc nhọn)
=>IH=IK (hai cạnh tương ứng)
thanh thảo trả lời sai rồi
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
THẾ MÀ CÓ 6 NGƯỜI BẢO LÀ ĐÚNG
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
b: IA=IB=AB/2=6(cm)
=>CI=8(cm)
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
a)do CA=CB nên tam giác ABC là tam giác cân tại C
=> góc A băngf góc B
xet tam giác ACI và ABI theo trường hợp cạnh huyền góc nhọn => IA=IB
b) AB = 12 mà IA = IB => IA=IB=6
sử dụng py-ta-go để tính IC
c) thiếu đề
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
ta có: CB = CA ( = 10 cm )
=> tam giác ABC cân tại C
Mà CI là đường cao nên CI cũng là đường trung trực
=> IA = IB