K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

42585

10 tháng 2 2019

TỪ ĐỀ BÀI => 5A=1+1/5+1/5^2+......+1/5^2013

                      CÓ 4A=5A-A

                    =>4A=(1+1/5+1/5^2+.....+1/5^2013)-(1/5+1/5^2+1/5^3+....+1/5^2014)

                   =>4A= 1- 1/5^2014

                   =>A= (1-1/5^2014)/4  ;CÓ 1-1/5^2014 <1

                    =>A<1/4

10 tháng 2 2019

\(\text{Giải}\)

\(\text{5A=1+1/5+1/5^2+......+1/5^2013}\)

\(\Rightarrow5A-A=4A=1-\frac{1}{5^{2014}}< 1\Rightarrow A< \frac{1}{4}\left(\text{đpcm}\right)\)

19 tháng 5 2020

Ôi ***** :)) bạn thêm vào cho mình mấy từ ạ :<< cop xg mà nó mất chữ :((
Dòng thứ nhất : Ta có : A = ...

Dòng mà B = .... thêm vào : Lại có B = ....

Dòng gần cuối : Như vậy ta có A/B = ....

24 tháng 4 2022

4S=1+24+342+....+2014420134S=1+24+342+....+201442013

4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)

3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014

3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014

đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023

4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)

3A=4−1420233A=4−142023

A=43−13.42023A=43−13.42023

⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024

⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024

do 49<48=1249<48=12

⇒S=49−19.42023−20143.42024<48=12(đpcm)

8 tháng 4 2017

gọi dãy số trên là A

ta có A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

A<1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

A<1-\(\frac{1}{2014}\)=\(\frac{2013}{2014}\)

Vậy A < \(\frac{2013}{2014}\)

8 tháng 4 2017

ko biết

7 tháng 11 2018

Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2014^3}< B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2013.2014.2015}\)

Mà \(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2013.2014.2015}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)

\(=\frac{1}{2}-\frac{1}{2014.2015}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

7 tháng 11 2018

Mình thấy bạn trả lời sai sai hay sao đấy