K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Dùng phương pháp thế để giải hệ phương trình.

Từ phương trình đầu, suy ra:  x = 7- 2y thế vào phương trình (2) ta được:

( 7 – 2y)2 + y2 – 2(7- 2y).y = 1

⇔ 49 - 28 y + 4 y 2 + y 2 - 14 y + 4 y 2 = 1 ⇔ 9 y 2 - 42 y + 48 = 0 ⇔ [ y = 8 3 y = 2

Với  y = 8 3 ⇒ x = 5 3

Với y = 2 thì x = 3.

Vậy hệ phương trình đã cho có 2 nghiệm: 5 3 ; 8 3   v à   3 ; 2

1 tháng 3 2020

\(\Leftrightarrow\left|\left(x-y+1\right)^2+x-2\right|=2x-\left|\left(x-1\right)\left(x-2\right)\right|\)

\(\left|\left(x-2\right)\left(x-1\right)\right|\ge0\Rightarrow\left[{}\begin{matrix}x\le1\left(1\right)\\x\ge2\left(2\right)\end{matrix}\right.\)-Trường hợp (1) có PT:

\(x-2\ge0\Rightarrow\left(x-y+1\right)^2+x-2>0\)..PT trở thành

\(\left(x-y+1\right)^2+x-2+4=2x-\left(x^2-3x+2\right)\)

\(\Leftrightarrow2x^2-2xy+y^2-4x-2y+5=0\)

Giải nữa thì nhờ mk nha

a: \(=\left(4xy^2+2xy^2\right)+\left(3x^2y-3x^2y\right)=6xy^2\)

b: \(=xy\left(\dfrac{1}{5}+\dfrac{1}{3}\right)+xy^2\left(\dfrac{4}{3}-\dfrac{2}{5}\right)=\dfrac{8}{15}xy+\dfrac{14}{15}xy^2\)

d: \(=\dfrac{-4}{9}\cdot\dfrac{3}{2}\cdot xy^2\cdot xy^3=-\dfrac{2}{3}x^2y^5\)

27 tháng 2 2022

bạn làm chi tiết ra được không ?

 

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

17 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

NV
25 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}14x^2-28x+7y^2=-7\\3x^2+2xy+2y^2=7\end{matrix}\right.\)

\(\Rightarrow17x^2-26xy+9y^2=0\Rightarrow\left(x-y\right)\left(17x-9y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=\frac{9}{17}y\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2-4x^2+x^2=-1\\2x^2-4.\frac{9}{17}x^2+\left(\frac{9}{17}x\right)^2=-1\end{matrix}\right.\)

Bạn tự giải nốt

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2