K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Ta có :

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+..............+\dfrac{1}{2^{10}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.................+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=\left(\dfrac{1}{2}+...........+\dfrac{1}{2^{10}}\right)-\left(1+\dfrac{1}{2}+..........+\dfrac{1}{2^9}\right)\)

\(\Rightarrow A=1-\dfrac{1}{2^{10}}\)

\(A=\dfrac{2^{10}-1}{2^{10}}\)

~ Chúc bn học tốt ~

15 tháng 4 2017

A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)

2A=2(\(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\))

2A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

2A-A=1-\(\dfrac{1}{2^{10}}\)=\(\dfrac{1023}{1024}\)

1 tháng 4 2017

Đặt vế đầu là A, vế sau là B.

Vế A:

- Tử:

\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)

\(=100\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
\(=100\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{98}+\dfrac{1}{99}+\dfrac{1}{100}\right)\)

Vậy:

\(A=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ =\dfrac{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ \Rightarrow A=50\)

Vế B:

- Tử:

\(92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\\ =\dfrac{40}{45}+\dfrac{40}{50}+...+\dfrac{40}{500}\\ =40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)\)

Vậy:

\(B=\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\\ =\dfrac{40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{500}}\\ \Rightarrow B=40\)

Từ 2 vế trên ta tính được \(\dfrac{A}{B}=\dfrac{50}{40}=\dfrac{5}{4}\)

1 tháng 4 2017

@Tuấn Anh Phan Nguyễn giúp mk!!

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}\)

\(=\frac{(n+1)^2-2n}{n^2}+\frac{1}{(n+1)^2}=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)

\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)

\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào bài toán suy ra:

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=2016+\frac{1}{2}-\frac{1}{2018}=2016,5-\frac{1}{2018}\)

27 tháng 6 2023

\(a,\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\left(dkxd:a\ne9,a\ge0\right)\)

\(=\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-3\left(\sqrt{a}-3\right)-a+2}{a-9}\)

\(=\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{a-9}\)

\(=\dfrac{11}{a-9}\)

\(b,\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

27 tháng 6 2023

bạn ơi có phải \(x\sqrt{x}\) là \(\left(\sqrt{x}\right)^3\) đúng ko ạ

18 tháng 4 2021

B=\(\dfrac{1}{2}:\left(-1\dfrac{1}{2}\right):1\dfrac{1}{3}:....:\left(-1\dfrac{1}{100}\right)\)

   =\(\dfrac{1}{2}:\dfrac{-3}{2}:\dfrac{4}{3}:....:\dfrac{-101}{100}\)

   =\(\dfrac{1}{2}.\dfrac{-2}{3}.\dfrac{3}{4}........\dfrac{-100}{101}\)

   =\(\dfrac{1.\left(-2\right).3......\left(-100\right)}{2.3.4...........101}\)

   =\(\dfrac{1}{101}\)

\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)

\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)

24 tháng 1 2022

Thank youyeu